DISTURBANCES IN THE SIZE OF VARIOUS METABOLIC POOLS OF SOME ISOLATED SOIL ALGAL SPECIES IN RESPONSE TO HEAVY METAL TOXICITY

Awatief F. Hifney¹, Ahmed A. Issa¹, Mahmoud S. Adam¹, Amr A. Al-Abssy²

¹Botany Department, Faculty of Science, Assiut University, Assiut, Egypt.
²Botany Department, Faculty of Science, Taiz University, Taiz, Yemen.

Abstract

The growth and some metabolic activities of the five species namely Chlamydomonas reinhardtii (Dang), Chlorococcum humicola (Nag), Scenedesmus obliquus (Turp) Kütz (green algae) and Anabaena circinalis (Rabh.) and Wollea saccata (Wollea Bornet and Flahault) (Blue-green algae) isolated from soil at Assiut, Egypt were investigated under various concentrations of Cd²⁺, Ni²⁺ and Pb²⁺. The growth of the C. reinhardtii, C. humicola and S. obliquus were inhibited by all used heavy metals. The highest inhibitory effect was exerted by Ni²⁺ or Cd²⁺, while the lowest toxicity was exerted by Pb²⁺. However, the growth was enhanced by low and medium concentrations of Pb²⁺.

The toxicity of heavy metals for C. reinhardtii, C. humicola, S. obliquus and W. saccata was as follows Ni²⁺ > Cd²⁺ > Pb²⁺. In case of A. circinalis the toxicity of heavy metal was as follows Cd²⁺ > Ni²⁺ > Pb²⁺. Soluble sugars, soluble protein, free amino acids and proline of all species, exhibited a high significant increase with all tested heavy metals supplemented. Insoluble carbohydrates, were generally lowered in various treatments, of heavy metals irrespective the test algae.

Key word: Green algae, Blue green algae, Cd²⁺, Ni²⁺, Pb²⁺.

Introduction

Cadmium (Cd²⁺) and Nickel (Ni²⁺) are widely used in a variety of industrial processes, including plastic manufacturing, electroplating, and as well as in paints (Siripornadulsil et al., 2002). In soils, Cd²⁺ is found in various forms and speciation (Adriano, 1986). Beginning with exchangeable phase where absorption of Cd²⁺ by electrostatic altercation to negatively charged exchange sites on clays, organic particles, and hydroxyl oxides occurred. Then absorption with oxides, hydroxides and hydrous oxides observed in reducible phase followed by carbonate phase; organic phase; lattice phase; sulfide phase and finally soluble.
phase which exists in soil solution in either the ionic or complexes forms (Cook and Morrow, 1995; Yaron et al., 1996). The toxicity and accumulation of Cd\(^{2+}\) by algae have been reviewed recently (Robidoux et al., 2004; Andrade et al., 2005; Iman et al., 2008). Cadmium inhibits cell division and biomass. Motility can be lethal for algae, the toxicity of Cd\(^{2+}\) is depended on both the organism and toxicity criteria employed although specific trend is senility are difficult to identify.

In soils all over the world the average concentration of nickel (Ni\(^{2+}\)) is probably 20 mg/kg (20 ppm), which obscures much variation between soil types (McGrath, 1987). A considerable variations of Ni\(^{2+}\) concentration may occurred due to the parent material as well as anthropogenic sources, including metal smelting, sewage sludge disposal, phosphate rock used as fertilizer and the mining (McGrath, 1995). Rashed et al. (1995) gave a range of 21 to 44 ppm as the Ni\(^{2+}\) content of alluvial soils in the Nile Delta, Egypt with an average of 32 ppm for total content and from 0.38 to 1.34 ppm with an average of 0.66 ppm for available form. In Assiut City the average concentration of Ni\(^{2+}\) was 0.22 ppm in unpolluted soils (Issa et al., 2006).

Lead (Pb\(^{2+}\)) is a well-known pervasive chemical and is known for its toxicity. The major environmental sources of metallic lead and its salts are paint, autoexhaust, food and water. The soil adjacent to highways had lead accumulation in the range of 128 to 700 ppm decreased with distance from traffic and with soil depth (Kelemen and Csordas, 1994). The situations of Pb\(^{2+}\) in some Egyptian soils are reported by El-Molla (1980). He found that, Pb\(^{2+}\) content varied from 71 to 226 ppm in the surface soils adjacent to Cairo-Alexandria highway. El-Gharably (1993) recorded that the Pb\(^{2+}\) contents of sewage sludge collected from different sites in Assiut City ranged from 35 to 38 ppm, and the unpolluted soils ranged from 0.08 to 0.15 ppm. Lead tends to accumulate to high extent in algae. Pb\(^{2+}\) was found to be sequestered in polyphosphate bodies of the blue-green algae (Plectonema boryanum) and in cell sectors with polyphosphate bodies of green algae Chlorella saccharophila and diatoms Navicula incerta and Nitzschia closterum (Jensen et al., 1982). Wehr and Whitton (1983) reported the growth of some algae species (e.g. blue-green algae Phormidium autumnale, Aphanocapsa sp., Pseudoanabaena catenata, diatoms Achnanthes minutissima, Navicula tantula, Calones bacillum, Cymbella bipartita or green algae Mougeotia sp. and Hormidium rivulare) in waters with elevated lead concentrations. Say and Whitton (1982) reported the growth of a blue-green alga Schizothrix sp. in close association with anglesite (PbSO\(_4\)), the concentration of Pb\(^{2+}\) in the sediment having been 110g.kg\(^{-1}\).

In Egypt and other countries, irrigation with sewage wastewater, sedimentation of sludge material and deposition of air-born particulates on plants and soils are probably the most important source of soil and plant contamination with heavy metals, particularly near industrial zones. These pollutants affect on
algal growth and metabolic activities. This study aimed to follow the growth as well as the metabolic activities of the three green algae (C. reinhardtii, C. humicola and S. obliquus) and two cyanobacteria (A. circinalis and W. saccata isolated from soil of different Cd, Ni, Pb concentrations.

Materials and Methods

Three species of green algae (C. reinhardtii, C. humicola and S. obliquus) and two blue-green algae A. circinalis and W. saccata were isolated from selected soils contaminated with heavy metals at Assiut Governorate (for details of the algae under testing and for description of these polluted soil see Issa et al., 2006). The effects of (0.05, 0.1, 0.2 mM expressed as low, medium, high concentrations of Cd, Ni, Pb on the algal growth as well as some metabolic activities were assessed.

All algal species were cultivated in batch culture treated with various concentrations of Cd, Ni, Pb (For details see Issa et al., 2006).

The isolated blue green algae were cultured using a modified blue green algal medium BG-11 (Rippka and Herdman, 1993). While the isolated green algae were cultured using a Bold's Basal medium (Bischoff and Bold, 1963). The addition of the heavy metals treatments did not exert a large change in the pH of the medium. All cultures started with a pH of 7.1 and remained unchanged for one week. 3300 Walt tungsten lamp were used for illumination at room temperature.

The growth rate and generation time of each tested algal species was grown with various concentrations of heavy metals were followed by daily measurements of absorbance at 750 nm as described by Lefort-Tran et al. (1988). Optical density was used as a parameter for algal growth. The growth rate \(\mu \) \((d^{-1})\) was determined from the following formula:

\[
\mu(d^{-1}) = \frac{\ln N_1 - \ln N_0}{t_1 - t_0}
\]

Where

\(N_1 \) = Optical density at time \(t_1 \).
\(N_0 \) = Optical density at time \(t_0 \).
\(t_1 - t_0 \) = The time elapsed in days between two determinations of optical density.

While the generation time \(G \) (doubling of optical density) can be calculated as follows:

\[
G = \frac{\ln 2}{\mu} d
\]
After 7 days, the algal cells were harvested for measuring the growth and some metabolic estimation, in the late of exponential phase or beginning of the stationary phase according to the algal growth curve. The cell numbers (in case of green algae) were determined by counting of cell number microscopically using 1 mm deep haemocytometer slide. For determination of dry weight, 10 ml of algal culture, after filtered through glass fiber filter paper, was dried for two hours in oven at 105°C. The data were given as mg ml⁻¹ algal culture.

Pigments represented by chlorophyll a (chl a) and chlorophyll b (chl b) were estimated in green algal species, while chlorophyll (chl a) only was measured in blue green algal species by extracting in hot methanol at 70°C for 10 minutes (Marker, 1972; Metzner et al., 1965). The photosynthetic activity was measured polarographically as oxygen evolution using a Clark type electrode (O₂ Meter CG867, Germany). The data obtained were calculated as μmoles O₂/mg chlorophyll/hour. Respiration was measured in the dark as O₂-uptake in the same sample. The anthrone sulphuric acid method (Fales, 1951; Schlegel, 1956 and Badour, 1959) was used for the determination of all carbohydrate including polysaccharides. While soluble, insoluble and total proteins were measured according to Lowry et al. (1951). Free amino acids were extracted from algal suspension and determined according to the method of Lee and Takahashi (1966). Proline was determined according to the method of Bates et al. (1973).

Results and Discussion

Comparing the results to the control (no heavy metals added) the growth rates of the C. reinhardtii, C. humicola, S. obliquus and W. saccata were inhibited by all applied heavy metals.

The highest inhibitory effect was detected by Ni²⁺ and Cd²⁺ while the lowest toxicity was exerted by Pb²⁺ (Figs. 1, 2, 3, 4 and 5). Meanwhile, the growth rate of A. circinalis was enhanced by low and medium concentrations of Pb²⁺ (Fig. 4). The growth rate as well as minimum generation time was recorded for all tested species and control cultures. Rachlin et al. (1983) recorded 50% reduction of growth of Navicula by certain concentrations of Cd²⁺, Co²⁺, Pb²⁺ and Zn. While the growth rate of Kirchneriella lunaris was inhibited by Cd²⁺, Mn²⁺, Ni²⁺ and Co²⁺ (Issa et al., 1995). On the other side, El-Enany and Issa (2000) stated that the growth of Nostoc linckia and Nostoc rivularis were showed a significant stimulation in low waste treatments compared to control culture, not only for the number of cells but also, the time required to reach the exponential and the stationary phases.
Disturbances in the size of various metabolic pools of some isolated soil algal species in response to heavy metals.

Figure (1): Growth rate of *Chlamydomonas reinhardtii* under various heavy metals concentrations. Values are means of three replicates; ES. is smaller than the symbol in all cases.

Figure (2): Growth rate of *Chlorococcum humicola* under various heavy metals concentrations. Values are means of three replicates; SE. is smaller than the symbol in all cases.
Figure (3): Growth rate of *Scenedesmus obliquus* under various heavy metals concentrations. Values are means of three replicates; s.e. is smaller than the symbol in all cases.

Figure (4): Growth rate of *Anabaena circinalis* under various heavy metals concentrations. Values are means of three replicates; s.e. is smaller than the symbol in all cases.
Disturbances in the size of various metabolic pools of some isolated soil algal species in response to heavy metals.

Figure (5): Growth rate of *Wollea saccata* under various heavy metals concentrations. Values are means of three replicates; SE is smaller than the symbol in all cases.

However, high concentration of wastes reduced growth of the two species tested.

In general, cell number, chlorophyll a, b and dry matter of *C. reinhardtii*, *C. humicola* and *S. obliquus* were markedly decreased with increasing heavy metals concentration (Table 1-3). However, Ni2+ and Cd2+ appear to have a serious effect on pigments. Also, the contents of chlorophyll a and dry matter of *A. circinalis* and *W. saccata* were generally decreased in Cd2+ and Ni2+ concentrations (Tables 4 and 5). In Pb2+ treated cultures, chlorophyll a of *W. saccata* was slightly increased and the dry matter was almost unchanged. The toxicity of heavy metals for *C. reinhardtii*, *C. humicola*, *S. obliquus* and *W. saccata* was as follows Ni2+ > Cd2+ > Pb2+. In case of *A. circinalis* the toxicity of heavy metals was as follows Cd2+ > Ni2+ > Pb2+. *Sabnis et al. (1969)* attributed that chlorophyll damage on the thylakoid membrane could be due to the affinity of heavy metals. *Issa et al. (1998)* stated that, the pigment fractions of *Kirchneriella lunaris* and *Scenedesmus obliquus* under various heavy metals were significantly decreased. Moreover, nickel and manganese were very toxic to pigment fractions. The reduction of chlorophyll may be due to sensitivity of the enzymes of chlorophyll biosynthesis towards heavy metals ions (Abdel-Basset et al., 1995).

Photosynthetic O\textsubscript{2} evolution and respiratory oxygen uptake of the five species tested were also affected by these treatments. While the photosynthetic O\textsubscript{2} evolution was reduced proportionally to metal toxicity, and the respiratory oxygen uptake was enhanced by heavy metals applied. This results in accordance with *Mendoza-Cozat et al. (2002).*

Egyptian J. of Phycol. Vol. 11, 2010
Generally, Cd\(^{2+}\) or Ni\(^{2+}\) have a serious effect on O\(_2\) exchanges depending on the species tested. Green algae were highly tolerant to heavy metals than blue-green algae under these treatments (Tables 1-3). The toxic effects of Cd in *Euglena gracilis* include inhibition of growth, motility, phototaxis and photosynthesis (Mendoza-Cozatl *et al.*, 2002). Cadmium is more toxic than zinc to the growth and photosynthetic O\(_2\) evolution of *Anabaena variabilis* (Attridge and Rowell, 1997; Axtell *et al.*, 2003). Takamura *et al.* (1989) stated that, Cyanophyceae are sensitive to copper, cadmium, zinc metals than other algae tested (green algae or diatoms) for photosynthetic activity, through the inhibition of photosystem II and/or reduction the four enzymes involved in the fixation of CO\(_2\) for at least the first 2 days of the exponential growth.

As a result, the pool size of soluble sugars of the five species tested, exhibited a high significant increase by heavy metals (Cd\(^{2+}\), Ni\(^{2+}\) and Pb\(^{2+}\)) supplemented. Insoluble carbohydrates were generally lowered in various treatments, irrespective (Tables 1-5). The same results was obtained by Adam (1995) using the green algae *Kirchneriella lunaris* and Lead as heavy metals. Hellebust (1965) reported that *Phaeodactylum* secretes up to 7% of the total assimilation carbon, some of which are polysaccharides liberated from the cell surface, which in turn act as binding agents for lead. The level of storage carbohydrates was raised at low Cd\(^{2+}\) concentrations, while at high concentration the opposite was obtained (Greger and Bertell, 1992). Furthermore, the accumulation of saccharides exerts feedback inhibition of photosynthesis or even triggers gene expression resulting in lower activities of ribulose 1,5 bisphosphate carboxylase/oxygenase (Issa *et al.*, 2002).

Similarly, the contents of soluble proteins in all five species tested were raised under heavy metals treated cultures (Tables 1-5). The elevation of soluble proteins at the expense of insoluble proteins generally indicates an inhibition in the growth efficiency by heavy metals supplemented. The toxicity of heavy metals was as follows Cd\(^{2+}\) > Ni\(^{2+}\) > Pb\(^{2+}\). Total protein contents were mostly found to be generally lowered under conditions of stress (Yupsanis *et al.*, 1994). While soluble proteins were found to be raised when the plants were exposed to stress conditions (Xu *et al.*, 1996). Such elevation of soluble protein contents was mostly ascribed to a decline in the content of relatively higher molecular proteins (Pelah *et al.*, 1997). Algae detoxify heavy metals via metal-binding proteins of low molecular weight and high cysteine and metal content (Zenk, 1996). Furthermore, metallothionein proteins have been postulated to play a role in the detoxification of heavy metals (Vitarella *et al.*, 1996 and El-Enanay and Issa, 2000).

In parallel, free proline and free amino acids were significantly accumulated in the tested algal species by all heavy metals applied. The highest values of proline and free amino acids were recorded in *A. circinalis* and *W.*
Disturbances in the size of various metabolic pools of some isolated soil algal species in response to treatment (Table 1). Response of communities through direct changes to heavy metals locally and their effects on growth as well as some metabolite activities.
<table>
<thead>
<tr>
<th>Treatment</th>
<th>Control</th>
<th>CCl<sub>4</sub></th>
<th>H</th>
<th>N<sub>2</sub></th>
<th>M</th>
<th>L</th>
<th>W</th>
<th>P<sub>5</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100%</td>
<td>100%</td>
<td>100</td>
<td>100%</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100%</td>
</tr>
<tr>
<td>Proline</td>
<td>A.A.</td>
<td>T.P.</td>
<td>Ins.P.</td>
<td>S.P.</td>
<td>T.C.</td>
<td>Ins.C.</td>
<td>S.C.</td>
<td>O<sub>2</sub></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Disturbances in the size of various metabolic pools of some isolated soil algal species in response to model compounds in relation to their biological effects on growth and some metabolic activities.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>A.A</th>
<th>T.P.</th>
<th>S.P.</th>
<th>T.C.</th>
<th>Chl.a</th>
<th>Chl.b</th>
<th>Prod.</th>
<th>G (d)</th>
<th>P (d)</th>
<th>Callim²</th>
<th>Callim²</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>Proline</td>
<td>A.A.</td>
<td>T.P.</td>
<td>S.P.</td>
<td>T.C.</td>
<td>A.C.</td>
<td>S.C.</td>
<td>O4-**</td>
<td>O4+**</td>
<td>Chlorophyll</td>
<td>Dry.m.</td>
<td>H (pH)</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Control</td>
<td>0.10</td>
<td>8.9</td>
<td>5.1</td>
<td>27.5</td>
<td>5.2</td>
<td>11.5</td>
<td>11.5</td>
<td>10.5</td>
<td>4.0</td>
<td>8.9</td>
<td>5.1</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>8.9</td>
<td>5.1</td>
<td>27.5</td>
<td>5.2</td>
<td>11.5</td>
<td>11.5</td>
<td>10.5</td>
<td>4.0</td>
<td>8.9</td>
<td>5.1</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>8.9</td>
<td>5.1</td>
<td>27.5</td>
<td>5.2</td>
<td>11.5</td>
<td>11.5</td>
<td>10.5</td>
<td>4.0</td>
<td>8.9</td>
<td>5.1</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>8.9</td>
<td>5.1</td>
<td>27.5</td>
<td>5.2</td>
<td>11.5</td>
<td>11.5</td>
<td>10.5</td>
<td>4.0</td>
<td>8.9</td>
<td>5.1</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>8.9</td>
<td>5.1</td>
<td>27.5</td>
<td>5.2</td>
<td>11.5</td>
<td>11.5</td>
<td>10.5</td>
<td>4.0</td>
<td>8.9</td>
<td>5.1</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>8.9</td>
<td>5.1</td>
<td>27.5</td>
<td>5.2</td>
<td>11.5</td>
<td>11.5</td>
<td>10.5</td>
<td>4.0</td>
<td>8.9</td>
<td>5.1</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>8.9</td>
<td>5.1</td>
<td>27.5</td>
<td>5.2</td>
<td>11.5</td>
<td>11.5</td>
<td>10.5</td>
<td>4.0</td>
<td>8.9</td>
<td>5.1</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>8.9</td>
<td>5.1</td>
<td>27.5</td>
<td>5.2</td>
<td>11.5</td>
<td>11.5</td>
<td>10.5</td>
<td>4.0</td>
<td>8.9</td>
<td>5.1</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>8.9</td>
<td>5.1</td>
<td>27.5</td>
<td>5.2</td>
<td>11.5</td>
<td>11.5</td>
<td>10.5</td>
<td>4.0</td>
<td>8.9</td>
<td>5.1</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>8.9</td>
<td>5.1</td>
<td>27.5</td>
<td>5.2</td>
<td>11.5</td>
<td>11.5</td>
<td>10.5</td>
<td>4.0</td>
<td>8.9</td>
<td>5.1</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>8.9</td>
<td>5.1</td>
<td>27.5</td>
<td>5.2</td>
<td>11.5</td>
<td>11.5</td>
<td>10.5</td>
<td>4.0</td>
<td>8.9</td>
<td>5.1</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>8.9</td>
<td>5.1</td>
<td>27.5</td>
<td>5.2</td>
<td>11.5</td>
<td>11.5</td>
<td>10.5</td>
<td>4.0</td>
<td>8.9</td>
<td>5.1</td>
<td>11.5</td>
</tr>
</tbody>
</table>

Table (5): Response of Algerian C. Rhiz in heavy metals toxiry and their effects on growth as well as some metabolite activities.
Table (5) Response of various metabolic pools of some isolated soil algal species in response to toxic and phytotoxic media toxicity and their effects on growth as well as some metabolic activities:

<table>
<thead>
<tr>
<th>Treatment</th>
<th>O₂⁺</th>
<th>O₂⁻</th>
<th>CHła</th>
<th>ΔG (a)</th>
<th>H (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.88</td>
<td>0.87</td>
<td>0.88</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table shows the concentration of various metabolic pools and their activities in response to different treatments. The data is organized in columns for various parameters and rows for different treatments. The values represent the concentration of oxygen radicals (O₂⁺ and O₂⁻), chlorophyll (CHła), and the activity of a specific metabolic enzyme (ΔG (a)). The treatment 'Control' serves as a baseline for comparison.
saccata and the lowest one in S. obliquus (Tables 1-5). Proline has been reported to be accumulated in tissues and/or organs of plant subjected to drought, salt, temperature, heavy metals stress, or infected by some pathogens in plants (Nikolopoulos and Manetas, 1991; Alia Saradhi, 1992). Proline inhibits metal-induced loss of potassium ions in Chlorella vulgaris and Trebowxia erici (chlorophyta) (Backor et al. 2004).

Wu et al. (1995 and 1998) mentioned that copper and cadmium treatment enhanced proline accumulation in green algae (Chlorella sp., Pediastrum duplex), the diatom (Nitzschia palea) and a Cyanobacterium (Anacystis nidulans). The relationship between proline level and metal accumulation revealed that the accumulation of free proline corresponds to the uptake of the metals (Cd$^{2+}$, Ni$^{2+}$ and Mn$^{2+}$) by Scenedesmus armatus cells (El-Enany and Issa, 2001). Proline accumulation may play a role in heavy metal detoxification (Costa and Morel, 1994); it could be involved in metal chelation in cytoplasm (Farago and Mullen, 1979), especially in the case of metals with a preference for nitrogen or oxygen coordination over phytochelations (Grill et al., 1987).

The overall conclusion of this work is that heavy metals exerted disturbances on the size of various metabolic pools of algae. The degree of disturbance depends upon the metal used and the algal species.

References

Disturbances in the size of various metabolic pools of some isolated soil algal species in response …………………

Disturbances in the size of various metabolic pools of some isolated soil algal species in response

علاء فهمى حفنى 1، أحمد عبد السلام عيسى 1، محمود سلامة آدم 2، وعامر العبسي 2

1 قسم النبات - كلية العلوم - جامعة أسيوط - جمهورية مصر العربية.
2 قسم النبات - كلية العلوم - جامعة تعز - اليمن.

أجري هذا البحث لتوضيح الأثر السام للعناصر الثقيلة (الكادميوم والنيكل والرصاص) بتركيزات مختلفة (منخفض و متوسط و عالي) على النمو وبعض المسارات البيضية-three isolates of some species of soil algae in response to heavy metal stress.

2. Anabaena (cincinalis Rabh and Wollae saccata (Wolle) Bornet and Flahault.

أمكن ايجازها في ما يلي:

أ) تأثر بشدة كل من معدل النمو مسجله انخفاضاً مدروسًا للطحالب في جميع التركيزات المستخدمة، وكان أكثر العناصر سمية هو النيكل والكادميوم بينما أقل العناصر سمية هو الرصاص. بينما سجل معدل النمو زيادة ملحوظة لطحلب Anabaena circinalis.

ب) تناقص بشدة العدد الكلي وكولوروفيل A، ب، وكذلك الوزن الجاف للطحلب الخضراء وذلك بزيادة تركيز العناصر الثقيلة المستخدمة وكان النيكل والكادميوم أكثر سمية على الأصبغ النباتية. كما ناقش عند Anabaena circinalis, Wollae saccata زائر كوروفيل (A) في استخدام الكادميوم والنيكل وزائر كوروفيل (A) في استخدام عنصر الرصاص.

ج) كان معدل النمو في الطحالب الخضراء بالعناصر الثقيلة المستخدمة على النحو التالي:

1. النتيجة: فقدان الكادميوم ثم الرصاص، بينما تغير في Anabaena circinalis.
2. الرصاص.
3. تناقص معدل النمو الضوئي لجميع الطحالب بزيادة تركيز العناصر الثقيلة المستخدم وزاد معدل التنفس في جميع الطحالب الخضراء. وهذه تأثيرات أكثر من الطحالب الخضراء المزرعة.

4. تراكم السكريات والبروتينات الذائبة بزيادة النواص الثقافي المستخدمة على حساب السكريات والبروتينات غير الذائبة في جميع الطحالب في دراسة.

و) حلت زيادة ملحوظة لكل من الأحماض الأمينية الحرة والحمض الأميني البرولين في خلايا الطحالب المستخدمة وذلك تحت تأثير العناصر الثقيلة المستخدمة. ولذلك زادت تركيز حمض الأميني البرولين في كل من Anabaena circinalis, Wollae saccata.

5. Scenedesmus obliquus.

وأخيراً يجب الإشارة إلى أن العناصر الثقيلة الثلاثة المستخدمة احتجت تبليطًا في النمو ومعظم المسارات البيضية في الطحالب في البحث، ويعتمد هذا التأثير على نوع العناصر المستخدم وتركيزه وكذلك نوع الطحلب.

Egyptian J. of Phycol. Vol. 11, 2010 - 87