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ABSTRACT: In the aqua*c environment, the phytoplankton or micro-algae are the primary producers of food chain upon which most marine and 
freshwater organisms depend on. A phytoplankton bloom has been defined as a "high concentra*on of phytoplankton in an area, caused by 
increased reproduc*on”. Blooming can be s*mulated by several abio*c and bio*c factors, but the availability of nutrient in the water body seems 
to be the most limi*ng factor. Remote sensing is the acquisi*on of informa*on about an object, without being in physical contact with that object. 
It uses electromagne*c spectra to discriminate between objects by using the reflectance, absorbance, and transmiFance characteris*cs in 
different wavelengths. AircraH and satellite measurements of spectral reflectance are an effec*ve method for mapping the blooms of algae (spa*al 
distribu*on) and detec*ng phytoplankton biomass pigment composi*on in terms of Chlorophyll concentra*on and its temporal occurrence. 
Advances in the manufacturing of high-resolu*on sensors together with different wavelengths and data analysis are making the tool of remote 
sensing aFrac*ve and applicable for use in the management and research of coastal and inland waters. 
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INTRODUCTION 

Phytoplankton, as primary producers, play a 
fundamental role in marine and freshwater 
ecosystems, and their blooms can have significant 
ecological, economic, and societal implica;ons. 
Remote sensing offers tools and methodologies that 
enable efficient and comprehensive monitoring of 
phytoplankton dynamics across various spa;al and 
temporal scales. Phytoplankton, comprising minute 
floa;ng algae, thrive in the eupho;c zone of aqua;c 
environments, harnessing solar energy to convert 
carbon dioxide into organic compounds via 
photosynthesis (Pannard et al., 2007). Furthermore, 
algae/phytoplankton serve as crucial nutri;onal 
resources for a plethora of aqua;c organisms, 
significantly contribu;ng to energy transfer across 
trophic hierarchies (Pannard et al., 2007). Algal 
blooms represent natural phenomena within aqua;c 
ecosystems, in eutrophic aqua;c environments or 
resul;ng from anthropogenic pollu;on., where algae 
undergo rapid prolifera;on under specific 
environmental condi;ons Algae can grow 
exponen;ally, poten;ally leading to the emergence of 
harmful algal blooms (HABs) or nuisance algal blooms 
(Anderson et al., 2002).  

There are different remote sensing techniques for 
monitoring algal bloom:  

Ocean Color Satellites represent a milestone in 
remote sensing, par;cularly for studying chlorophyll-
a concentra;on and phytoplankton dynamics in the 
ocean e.g. Coastal Zone Color Scanner (CZCS). 
Subsequently, the Sea-viewing Wide Field-of-view 

Sensor (SeaWiFS) enhanced global ocean color data, 
improving spa;al and temporal resolu;on. SeaWiFS 
provide more accurate es;mates compared with 
Moderate Resolu;on Imaging Spectroradiometer 
(MODIS) in low to moderate Chlorophyll 
concentra;ons advancing our understanding of 
phytoplankton dynamics on a global scale 
(Belkin,2021; Ce;nić et al., 2024). 

MODIS (Moderate Resolu7on Imaging 
Spectroradiometer) One of the func;ons of MODIS 
that provides a synop;c view of coastal areas, aiding 
large-scale algal bloom iden;fica;on and monitoring 
(Kahru and Mitchell, 2001; Gower et al., 2005; Qi et 
al., 2014). 

Landsat Satellite Imagery with its mul;-temporal 
resolu;on allows for tracking algal bloom dynamics 
over ;me, aiding in understanding seasonal pa`erns 
(Kloiber et al., 2002; Gitelson et al., 2007). Hamed et 
al., (2007) used Landsat to examine the spatial 
distribution of blue-green algae within the saline 
alkaline lakes of Wadi El-Natrun, Egypt. His data 
served as an ini;al source of insight into the 
prolifera;on of Spirulina platensis (Figures. 1-4). The 
GIS-based analysis utilized Landsat Thematic 
Mapper data from March 25. 2000, to observe and 
monitor phytoplankton blooms within the Toshka 
region of Lake Nasser, Egypt (Fig. 5). The 
combination of spatial data analysis and ground-
based reference studies yielded substantial insights 
into the distribution patterns of bloom-forming 
cyanobacteria, namely Microcystis aeruginosa f. 
flosaquae and Aphanizomenon flos-aquae. From an 
ecological standpoint, these cyanobacterial species 
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pose significant risks due to their production of toxic 
compounds (Hamed, 2000). 

Sen7nel Satellite Series enables the detec;on and 
tracking of rela;vely small-scale algal blooms, 
contribu;ng to a comprehensive understanding of 
coastal water quality dynamics (Gholizadeh et al., 
2018). 

Hyperspectral Remote Sensing, studies by Gitelson et 
al. (2017) and Green et al. (2019) demonstrate the 
efficacy of these sensors in discrimina;ng between 
algae species, contribu;ng to a comprehensive 
understanding of aqua;c ecosystem (Legleiter et al., 
2022). 

Aerial Surveys/Aerial Remote Sensing is effec;ve for 
studying algal blooms in lakes, providing valuable 
insights into their spa;al distribu;on and temporal 
dynamics.  Unmanned aerial vehicles (UAVs) 
equipped with remote sensing instruments, such as 
mul;spectral or hyperspectral cameras, enable high-
resolu;on imaging of water bodies. For example, the 
use of drones has become increasingly prevalent in 
conduc;ng algae bloom surveys, providing a flexible 
and efficient means of gathering high-resolu;on 
spa;al data (Kislik et al., 2018). 

Understanding the spectral characteristics of 
phytoplankton and algae is crucial for interpreting 
remote sensing data and monitoring aquatic 
ecosystems effectively. These insights aid in assessing 
ecosystem health, identifying algal blooms, and 
understanding the impacts of environmental changes 
on phytoplankton dynamics. The spectral 
characteristics of phytoplankton/algae in remote 
sensing depends on the range of wavelengths used 
(visible portion of light and Near Infrared 
wavelength). Since Chlorophyll-a, the primary 
photosynthetic pigment, absorbs light most 
efficiently in the blue and red regions (at around 430 
nm and 665 nm), these bands are crucial for 
estimating phytoplankton biomass (Gitelson et al., 
2011).  

Phytoplankton has reflectance peak in the Near 
Infrared (NIR) due to cellular structure, allowing to 
differentiate between water- and phytoplankton-
dominated areas (Dall'Olmo et al., 2005). Accessory 
pigments, including phycocyanin, phycoerythrin, 
Chlorophyll-b, c, and carotenoids, contribute to 
overall spectral characteristics, influencing 
absorption features and aiding in taxonomic 
discrimination (Lorenzoni et al., 2015). 

 
Figure 1. False color composite image of Wadi El-Natrun 
depression during winter season. 
 

 
Figure 2. Magnified false color composite image showing the 
reddish tone which detected in El-Khadra Lake during winter season 
 

 
Figure 3. GIS based map of Wadi El-Natrun depression during 
winter season.  

 
Figure 4. Magnified GIS based map of Wadi El-Natrun depression 
during winter season showing blooming of Spirulina in El-Khadra 
Lake. 
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Figure 5. Land use/Land Cover of Lake Nasser – Toshka Area, 
Egypt (Landsat ETM + imagery PCA 123, 25 March 2000). 
 

The dynamics of cyanobacteria blooms have been 
successfully mapped using satellite remote sensing 
in several regions around the globe, with notable 
examples in Lake Erie (Sayers et al., 2019), the Baltic 
Sea (Kahru and Elmgren, 2014), Lake Taihu (Duan et 
al., 2012; Huang et al., 2014), and South African 
Lakes (Matthews et al., 2012; Matthews and 
Bernard, 2015). 

In conclusion, utilizing remote sensing techniques 
for monitoring phytoplankton dynamics is crucial 
and continually evolving. Various remote sensing 
platforms have provided valuable insights into 
phytoplankton populations, offering versatility in 
estimating biomass, distinguishing functional types, 
and characterizing optical properties. These 
capabilities have implications for monitoring 
harmful algal blooms, environmental management, 
and public health protection. 
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