NUTRIENT REMOVAL BY PHOTOSYNTHETIC MICROORGANISMS FROM SYNTHETIC WASTEWATER

Document Type : Original Article

Author

Botany Department, Faculty of Science Cairo University

Abstract

The Cyanobactrium Phormidium fragile and the green alga Scenedesmus armatus are chosen in this study for treatment of synthetic wastewater.  The growth rate and nutrient removal rates were investigated under different irradiance condition. The growth rate increased with increasing irradiance, reaching a saturation value at 2000 and 1500 Lux for P. fragile and S. armatus respectively.  The organic acids removal rates by S. armatus were higher than those removed by P. fragile reaching the maximum values at 1500 and 2000 Lux.  On the other hand phosphate, nitrate and ammonia removal rates by P. fragile  were higher than those by S. armatus. A mixed culture of both P. fragile and S. armatus was therefore used for simultaneous removal of organic acids, nitrate, ammonia and phosphate.   Both acetate and propionate removal rates increased with the increase in the concentration of S. armatus while removal rates of nitrate and phosphate increased with the increasing in the concentrations of P. fragile.

Keywords


APHA, American public Health Association, American water works association, and water pollution control federation (1989). Standard methods for the Examination of water and wastewater, Washington, DC: 117-120.
Bischoff, H.W. and Bold, H.C. (1963).  Physiological studies. 4- some soil algae from Enchanted cock and related algal species.  Univ.  Texas. Publ. N. 6328: 32-36.
Blier, R.; Laliberté, G and De la Noüe, J. (1995).  Tertiary treatment of cheese factory anaerobic effluent with Phormidium bohneri and Micractinium Pusillum. Biores. Tech. 52: 152-155.
Boussiba, S.; Vonshak, A.; Cohen, Z.; Avissar, Y. and Richmond, A. (1987).  Lipid and biomass production by the halotolerant microalga Nannochoropsis Salina. Biomass 12: 37-47.
Chaney, A.L. and Mar Basch, E.P. (1962). Modified reagents for determination of urea and ammonia J. Clin. Chem. 8, 180-182.
Chevalier, P.; Proulx, D.; Lessard, P.; Vincent, W.F. and De la Noüe, J. (2000). Nitrogen and phosphorus removal by high latitude matforming cyanobacteria for potential use in teriary wastewater treatment. J. Appl. Phycol. 12: 105-112
De la Noüe, J.; Laliberté, G. and Proulx, D. (1992):  Algae and wastewater. J. appl. Phycol. 4: 247-254.
Dortch,  (1990).  The interaction between ammonium and nitrate uptake in phytoplankton. Mar E col. Progr. Ser. 61: 183-201.
Fawcett, J. K. and Scott, J.E. (1960). A rapid and precise method for determination of urea. J. Clin. Pathol. 13, 156-159.
Fay, P. (1983).  The Blue-Greens, E dward Arnold Publishers Ltd., London: 87 pp.
Gantar, M.; Obreht, Z. and Dahlmacija, B. (1991).  Nutrient removal and algae succession during the growth of Spirulina Platensis and  Scendesmus quadricauda on swine wastewater. Biores. Technol. 36: 167-171.
Glazer, A.N. (1994). Phycobiliproteins-a family of valuable, widely used flourophores. J. app. Phycol. 6: 105-112.
Glombitza, K.W. and Koh, M. (1989). Secondary metabolites of  pharmaceutical potentials. In Gress well RC, Rees TAV, Shah N (eds), Algal and Cyanobacterial Biotechnology Longman, Harlow, 161-238.
Hu, Q.; Westerhoff, P. and Vermaas, W. (2000). Removal of nitrate from groundwater by cyanobacteria : Quantitative assessment of factors influencing nitrate uptake. Appl. Environ. Microbiol 66: 133-139.
Kishimato, M.; Okakura, T.; Nagashima, H.; Minowa, T.; Yakayama, S. and Yamaberi, K. (1994). CO2 fixation and oil production using microalgae. J. Ferment Bioengng 78: 479-182.
Laliberté, G.; Lessard, P.; De la Noüe, J. and Sylvestre, S. (1997). Effect of phosphorus addition on nutrient  re,oval from wastewater  with the Cyanobacterium Phprmidium bohneri. Bioresource Technol. 59: 227-233.
Menviq,  (1992). Détermination des nitrates et des nitrites. Méthode colorimétrique dutomatisée avec le sulfanilamide et al N. E.D. 87. 06/303-NO3 1.1.  Ministere de l’Environnement  du Québec. Québec, 9 pp.
Mespoulède, V. (1997).  Sélection et etude d’une souche de cyanobactéries polaires pour l’épuration d’un effluent eutrophisant. M. Sc. Thesis. Université Laval, Québec, Canada. 56 pp.
Mumford, T.F. Jr. and Milura, A. (1988). Porophyra as food:  cultivation and economics.  In Lembi C, Waaland J (eds), Algae and Human  Affairs. CambridgeUniversity Press, New York : 87-117.
Negoro, M.; Shioji, N.; Miyamoto, K. and Miura, Y. (1991). Growth of microalgae in high Co2 gas and effect of SOx and NOx. Appl. Biochem. Biotech. 28/29: 877-886.
Ogbonna, J.C.; Yada, H. and Tanaka, H. (1995).  Effect of cell movement by random mixing between the surface and bottom of photobioreactors on algal productivity. J. Ferment. Bioengng 79: 152-157.
Ogbonna, J. C.; Yoshizawa, H. and Tanka, H. (2000).  Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. J. appl. Phycol. 12: 277-287.
Roos, J.C. and Vincent W.F. (1998).  Temperature dependence of UV radiation effects on Antractic Cyanobacteria. J. Phycol. 34; 118-125.
Talbot, P. De la Noüe, J.  (1993). Tertiary treatment of wastewater with Phormidium bohneri (Schmide) under various light and temperature conditions. Wat. Res. 27: 153-159
Yoshihara, K.; Nagase, H.; Eguchi, K.; Hirata, K. and Miyamoto, K. (1996). Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA- 113 cultivated in long tubular photobioreactor. J. ferment.   Bioengng 82: 351-354.