ROLE OF VITAMINS IN AMELIORATING THE BIOLOGICAL WASTEWATER TREATMENT BY ALGAE

Document Type : Original Article

Authors

Botany department, Faculty of Science, Alexandria University, Alexandria, Egypt.

Abstract

This study evaluated the effect of different concentrations of vitamins, B12 and C in the process of wastewater treatment by the blue – green algae Synechocystis aquatilis and Chroococcus schizodermaticus. C. schizodermaticus was more efficient than S. aquatilis in removing phosphorus by using both vitamins at all concentrations, while maximum nitrate removal was attained after 20 days using vitamin C at concentration 25 mg/l in case of C. schizodermaticus reactor. Vitamin B12 caused the accumulation of nitrate in both algal reactors after 6 days at concentration 50 mg/l, while that accumulation began after 8 days with the use of concentration 75 mg/l. Concentration 25 mg/l of vitamin B12 caused accumulation after 6 days in C. schizodermaticus reactor and after 12 days at S. aquatilis reactor. Ammonia was completely disappeared from wastewater treated by C. schizodermaticus using vitamin B12 (concentration 75 mg/l) and vitamin C at its three concentrations in C. schizodermaticus reactors and only at concentration 25 mg/l in case of S. aquatilis reactor.

Keywords


Akimoto, M.; Shirai, A.; Ohtaguchi, K. and Koide, K. (1998). Carbon dioxide fixation and polyunsaturated fatty acid production by the red alga Porphyridium cruentum. Appl. Biochem. Biotechnol., 73: 269.
APHA, AWWA and WPCF (1985). Standard methods for the examination of water and wastewater. 16th edition.
Borowitzka, M. A. (1999). Commercial production of microalgae. Ponds, tanks, tubes and fermenters. J. Biotechnol., 70: 313.
Burgess, J. E.; Quarmby, J. and Stephenson, T. (1999). Micronutrient supplements for optimization of the treatment of industrial wastewater using activated sludge. Water Res., 33 (18): 3707.
Craggs, R. J.; McAuley, P. J. and Smith, V. J. (1997). Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Res., 31: 1701.
El-Naggar, A. H. and El-Sheekh, M. M. (1998). Abolishing cadmium toxicity in Chlorella vulgaris by ascorbic acid, calcium, glucose and reduced glulathione. Environ. Poll., 101: 169.
Faulkner, D. J. (1986). Marine natural products. Nature Prod. Rep., 3, 31.
Foyer, C. H. and Ferrario, S. (1994). Modulation of carbon and nitrogen metabolism in transgenic plants with a view to improved biomass production. Biochem. Soc. Trans., 22 (4): 909.
Furuki, M. and Tachibana, S. (1986). A spectrophotometrical study on the effect of vitamin B2 - acid on the growth of Chattonella antique. J. fermentation. Technology, 64 (2): 169.
Gowrinathan, K. P. and Rao, V. N. R. (1992). Reversal of heavy metal toxicity by ascorbic acid in microalgae. J. Swamy Botony, 9: 27.
He, Y. and Hader, D. (2002). UV- B- induced formation of reactive oxygen species and oxidative damage of the Cyanobacterium Anabaena sp: protective effects of ascorbic acid and N- acetyl – cysteine. J. photochemistry photobiol., 66: 115.
Hirano, A.; Ueda, R.; Hirayama, S. and Ogushi, Y. (1997). CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy, 22: 137.
Hirata, S.; Hayashitani, M.; Taya, M. and Tone, S. (1996). Carbon dioxide fixation in batch culture of Chlorella sp. using a photobioreactor with a sunlight-collection device. J. Ferment. Bioeng., 81: 470.
Korner, S. and Vermaat, J. E. (1998). The relative importance of Lemna gibba L., bacteria and algae for the nitrogen and phosphorus removal in duckweed- covered domestic wastewater. Water Res., 32: 3651.
Lau, P. S.; Tam, N. F. Y. and Wong, Y. S. (1994). Influence of organic- N sources on an algal wastewater treatment system. Resour. Conservation. Recycling, 11: 197.
 Lee, K. Y. and Lee, C. G. (2001). Effect of light/ dark cycles on wastewater treatments by microalgae. Biotechnol. Bioprocess Eng., 6: 194.
Lee, K. Y. and Lee, C. G. (2002). Nitrogen removal from wastewaters by microalgae without consuming organic carbon sources. J. Microbiol. Biotechnol., 12 (6): 979.
Lemmer, H.; Lind, G.; Metzner, G.; Nitschke, L. and Schade, M. (1998). Vitamin addition in biological wastewater treatment. Water Sci. Technol., 37: 395.
Liebler, D. C.; Kling, D. S. and Reed, D. J. (1986). Antioxdant protection of phospholipid bilayers by alpha- to copherol. Control of alpha- to copherol status and lipid peroxidation by ascorbic acid and glutathione. J. Biol. Chem., 261 (26): 121.
Lind, G.; Schade, M.; Metzner, G. and Lemmer, H. (1994). Use of vitamins in biological wastewater treatment. G W F- Wasser / Abwasser, 135: 595.
Markus, D. K.; Mckinnon, J. P. and Buceaafuri, A. F. (1982). Automatic analysis of nitrite, nitrate and ammonium- nitrogen in soils. New Jersey Agric. Exp. Stn., Publication no. D 15117- 84 supported by State Funds, presented in part before Division 4 Soil Science Soc. of America, Anaheim, CA, Dec. 2.
Miyamoto, E.; Watanabe, F.; Takenaka, H. and Nakano, Y. (2002). Uptake and physiological function of vitamin B12 in a photosynthetic unicellular coccolithophorid alga, Pleurochrysis carterae. Biosci. Biotechnol. Biochem., 66 (1): 195.
Murakami, M. and Lkenouchi, M. (1997). The biological CO2 fixation and utilization project by RITE (2). Energy. Convers. Mgmt., 38: S493.
Nagase, H.; Eguchi, K.; Yoshihare, K.; Hirata, K. and   Miyamoto, K. (1998). Improvement of microalgal NOx removal in bubble column and airlift reactors. J. Ferment. Bioeng., 86: 421.
Padh, H. (1990). Cellular functions of ascorbic acid. Biochem. Cell. Biol., 68 (10):1166.
Radmer, R. J. (1996). Algal diversity and commercial algal products. Bioscience, 46: 263.
Rai, L. C. and Raizada, M. (1988). Impact of chromium and lead on Nostoc muscorum: regulation of toxicity by ascorbic acid, glutathione and sulfur- containing amino acids. Ecotoxicol. Environ. Saf., 15 (2): 195.
Rowan, A. K.; Moser, G.; Gray, N.; Snape, J. R.; Fearnside, D.; Curtis, T. P.; Barer, M. R. and Head, I. M. (2003). A comparative study of ammonia – oxidizing bacteria in lab- scale industrial wastewater treatment reactors. Water Sci. Technol., 48 (3): 17.
Snedecor, G. W. and Cochran, W. G. (1967). Statistical methods. 6th Ed. Iowa State Univ. Press. Ames. Iowa, USA, P. 275.
Sudhakar, G.; Jyothi, B. and Venkateswarlu, V. (1991). Metal pollution and its impact on algae in flowering waters in India. Archives. Environ. Contamination and Toxicol., 21: 556.
Syrett, P. J. (1981). Nitrogen metabolism of microalgae. In : Physiological Bases of Phytoplankton Ecology, Platt, T. (Ed.) Can. Bull. Fish. Aqua. Sci., 210: 182.
Vonshak, A. (1986). Laboratory techniques for the cultivation of microalgae. Richmond, A, CRC handbook of microalgae mass culture. pp.117.
Vymazal, J. (1995). Algae and element cycling in wetland. By CRC Press, Inc. Lewis Publishers, pp. 689.
Watanabe, F.; Nakano, Y.; Tamura, Y. and Yamanaka, H. (1991). Vitamin B12 metabolism in a photosynthesizing green alga, Chlamydomonas reinhardtii. Biochem. Biophysica. Acta, 1075 (1): 36.
Zhang, Y.; Bicho, P. A.; Breuil, C.; Saddler J. N. and Liss, S. N. (1997). Resin acid degradation by bacterial strains grown on CTMP effluent. Water Sci. Technol., 35 (2-3): 33.