CALCIUM COUNTERACTS THE INHIBITORY EFFECT INDUCED BY SALINITY IN ANABAENA SUBCYLINDRICA AND NOSTOC LINCKIA.

Document Type : Original Article

Authors

1 Botany Department, Faculty of Science, Tanta University, Egypt.

2 The Technology Center for Education Development, Tanta.

Abstract

Growth and some metabolic activities of two cyanobacterial species (Anabaena subcylindrica and Nostoc Linckia) grown under salinity stress with and without exogeneously added calcium chloride were monitored. Salinity treatment  (0.3M NaCl) induced pronounced reduction in growth, pigment fractions, carbohydrates, O2–evolution, respiration, lipids content and increase in the measured elements content (Na+, K+, Mg++, Fe+++ and Ca++). Presence of Ca2+ (0.03 or 0.05 M CaCl2) caused significant recovery of the different measured growth parameters and metabolic activities.  The most important changes induced by salinity treatment are:1-Reduction in the polysaccharides content of both organisms accompanied with an increase in the soluble sugars, which proposed that the possible inhibitory effect of salinity associated with osmotic regulation. This effect could be ameliorated by addition of calcium ions. 2- The integrity of the plasma membranes impaired by salinity. Presence of calcium protects the membranes against the injury induced by salinity.

Keywords


Abdel-Basset, R. (1986).  Photosynthesis and some related metabolic processes as influenced by salinization treatments. Ph.D. Thesis, Faculty of Science,Assiut University, Assiut ,Egypt, 1-151.
Abdel-Basset, R.; Ahmed, A.M. and Ahmed, A.H. (1996). Modulation of maintenance respiration by Ca2+ in salinized Chlorella fusca cultures. Bull. Fac. Sci. Assiut Univ., 25(3-D): 1-12.
 
 
Abdel-Samad, H. M. (1993). Counteraction of NaCl with CaCl2 or KCl on pigment, saccharide and mineral contents in Wheat. Biol. Plant., 35(4): 555- 560.
Adam. M.S. and Issa, A. A. (2000). Effect of manganese and calcium deficiency on the growth and oxygen exchange of Scenedesmus intermedius cultured for successive generations. Folia Microbiol., 45(4):353-358.
Ahmed, A. M.; Mohammed, A. A.; Haikal, M. D. and Mohammed, R. A.  (1984). Effect of some salinisation treatments on growth of some green algal species. Egypt. J. Bot., 27(1-3): 93-103. 
Ahmed, A. M.; Radi, A. F.; Heikal, M. D. and Abdel-Basset, R. (1989).  Effect of Na-Ca combinations on photosynthesis and some related processes of Chlorella vulgaris. J. Plant Physiol., 135: 175- 178. 
Allakhverdiev, S. I.; Sakamoto, A.; Nishiyama, Y.; Inaba, M. and Murata, N. (2000). Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol., 123: 1047- 1056.
Allen, M. M. and Stanier, S. T.  (1968). Selective isolation of blue-green algae from water and soil. J. G. Microbiol., 51: 203.  
Allen, S. E.; Girmshow, H. M.; Parkinson, J. A. and Quarmby, C.  (1974). Chemical analysis of ecological material. Blackwell Scientific Publication Oxford, London, EdinburghMelbourne. PP. 565.     
Anand, N.l Hopper, R.; Jagatheswari, G.; Kashyap, A. and Kunar, H. (1994). Responses of certain blue-green algae (cyanobacteria) to salinity. Recent Advances in Phycol., 28: 255- 259.   
Bennett, A. and Bogorad, L. (1973).Complementary chromatic adaptation in a filamentous blue-green algae. J. Cell Biol., 58:419- 435.
Berube, K. A.; Dodge, J. D. and Ford, T. W. (1999)Effects of chronic salt stress on the ultra structure of Dunaliella bioculata (Chlorophyta, Volvocales): mechanism of response and recovery. Eur. J. Phycol., 34: 117- 123.
Brown, L. M. (1985).Stepwise adaptation to salinity in the green alga Nannochloris bacillaris. Can. J. Bot., 63: 327-332.
Chan, K. Y.; Wonk, K. H. and Wong, P. K. (1979). Nitrogen and phosphorus removal from sewage effluent with high salinity by Chlorella salina. Environ. Pollut., 18:139.
Cramer, G. R.; Epstein, E. and Lauchli, A. (1988).  Kinetic of root elongation of maize in response to short term exposure to NaCl and elevated calcium concentration. J.Exp. Bot., 39:1513-1522.
El-Sheekh, M. M. and Omar, H.H. (2002). Effect of high salt stress on growth and fatty acids content of the unicellular green alga Chlorella vulgaris. AZ. J. Microbiol., 55:  181- 190.
Erdmann, N. (1984). Salt-dependent 14CO2 fixation and accumulation of osmotically active intermediates in blue-green algae. Biol. Rundsch., 22(5): 331- 332.
Fernandez-Pinas, F.; Mateo, P. and Bonilla, I. (1997). Effect of Cd2+ on the bioelement composition of Nostoc UAM208: Interaction with calcium. Bull. Environ. Contam. Toxical., 58: 543- 549.
<NOWRAP><WBR><WBR>Greenway, H. and Munns, R. (1980).Mechanisms of salt tolerance in non-halophytes. Ann. Rev. Plant Physiol., 31:149- 190.
<!-- HIGHWIRE ID="125:4:1842:16" -->Hagen, C.; Grunewald, K.; Xylander, M. and Rothe, E.  (2001). Effect of cultivation parameters on growth and pigment biosynthesis in flagellated cells of Haematococcus pluvialis. J. Appl. Phycol., 13: 79- 87.
Hathout, T. A. (1996). Salinity stress and its concentration by the growth regulators "Brassinolide" in wheat plants ( Triticum aestivum L.) cultivar Giza 157. Egypt. J. Physiol. Sci., 20(1/2): 127- 152.      
Incharoensakdi, A. and Wutipraditkul, N. (1999). Accumulation of glycinebetaine and its synthesis from radioactive precursors under salt-stress in the Cyanobacterium Aphanothece halophytica. J.  Appl. Phycol., 11: 515- 523.
Jeffrey, S. W. and Humphrey, G. F. (1975)New spectrophotometricequations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz., 167: 191.
Jensen, A. and Liaaen Jensen, S. (1959). Quanitative paper chromatography of carotenoids. Acta Chem. Scand., 13: 1813.   
Karsten, U.; Wiencke, C. and Kirst, G. O. (1991).  The effect of salinity changes upon the physiology of eulittoral green macroalgae from Antarctica and southern Chile. I. Cell viability, growth, photosynthesis and dark respiration. J. Plant Physiol., 138:  667- 673. 
Khomutov, G.; Fry, I. V.; Huflejt, M. E. and Pacher, L.  (1990).  Membrane lipid composition, fluidity, and surface charge changes in response to growth of the fresh water Cyanobacterium  Synechococcus 6311under high salinity. Arch.  Biochem. Biophys., 277(2): 263- 267.
Kiegle, E.; Gilliham, M.; Haseloff, J. and Tester, M. (2000). Hyperpolarization-activated calcium currents found only in cells from the elongation zone of Arabidopsis thaliana roots. The plant J.,  21: 225-229.
Kimura, Y.; Hasegawa, K. and Ono, T. (2002). Characteristic changes of the s2/s1 difference FTIR spectrum induced by calcium depletion and metal cation substitution in the photosynthetic oxygen evolving complex. Biochemistry, 41(18): 5844-5853.
Kinraide, T. B. (1998).  Three mechanisms for the calcium alleviation of mineral toxicities. Plant Physiol., 118: 513- 520
Kirst, G. O. (1990). Salinity tolerance of eukaryotic marine algae. Annu. Rev. Plant Physiol. Plant Mol. Biol., 41: 21- 53. 
Lee, Y. K.; Tan, H. M. and Low, C. S. (1989). Effect of salinity of medium on cellular fatty acid composition of marine alga Porphyridium cruentum ( Rhodophyceae). J. Appl.  Phycol., 1: 19-23.
Lefort-Tran, M.; Pouphile, M.; Spath, S. and Packer, L. (1988). Cytoplasmic membrane changes during adaptation of the fresh water Cyanobacterium Synechococcus 6311 to salinity. Plant Physiol., 87: 767-775.
Leganes, F.; Sanchez-Maeso, E. and Fernandez-Valinte, E. (1987). Effect of indole acetic acid on growth and dinitrogen fixation by blue green algae. Sven. Bot. Tidskr., 64: 460- 461.
Lehtimaki, J.; Moisander, P.; Sivonen, K. and Kononen, K. (1997). Growth, nitrogen fixation, and nodulation production by two Baltic sea cyanobacreria. Appl. Environ. Microbiol., 63(5): 1647- 1656.
Leopold, A. C. and Willing, R. P. (1984).Evidence for toxicity effects of salt on membranes. In: Staples, R. C. and Toennissen, G. H. (eds.). Salinity tolerance in plants, strategies for crop improvement, A Wiley-Interscience Publication. John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore, PP. 67- 91.  
Lewin, R. A. and Robertson, J. A. (1971). Influence of salinity on the form of Asterocystis in pure culture. J. Phycol., 7: 236- 238.
Loebich, L. (1982).  Photosynthesis and pigment influenced by light intensity and salinity in the halophile Dunaliella salina (Chlorophyta). J. Mar. Biol. Ass. U.K., 62:  493- 508.
Lu, C. M. and Zhang, Z. H. (1999). Effect of salt stress on PS II function and photoinhibition in the Cyanobacterium Spirulina platensis. J. Plant Physiol., 155:  740- 745.
Lynch, J. and Lauchli, A. (1988). Salinity affects intracellular calcium in corn protoplasts. Plant Physiol., 87: 351- 356.
Macrobbie, E. A. C. (1995). ABA-induced ion efflux in stomatal gurad cells: multiple actions of ABA inside and outside the cell. The Plant J., 7:565- 576.
Marschner, H. (1995).Mineral nutrition of higher plants. 2 nd  edn. London. Academic Press
Masojidek, J.; Torzillo, G.; Kopecky, J.; Koblizek, M.; Nidiaci, L.; Komenda, J.; Lukavska, A. and Sacchi, A. (2000).  Changes in chlorophyll fluorescence quenching and pigment composition in the green alga Chlorococcum sp. grown under nitrogen deficiency and salinity stress. J. Appl. Phycol., 12: 417- 426.
Munns, R.; Greenway, H. and Kirst, G. O. (1983).  Halotolerant eukaryotes. In: Lange, O. L., Nobel, P. S., Osmond, C. B. and Zeigler, H. (eds.). Encyclopedia of Plant Physiol. 12C, 59- 136. Springer- Verlag, Berlin, Heidelberg, New York. 
Naguib, M. I. (1964). Effect of sevin on the carbohydrate and nitrogen metabolism during germination of cotton seeds. Ind. J. Expt. Biol., 2: 149- 152.
Nelson, N.  (1944). A photomeric adaptation of the somagi method for determination of glucose. J. Biol. Chem., 153: 375.
Nichols, D. S.; Olley, J.; Garda, H.; Brenner, R. R. and McMeekin  (2000). Effect of temperature and salinity stress on growth and lipid composition of Shewanella gelidimarina. Appl. Environ. Microbiol., 66(6): 2422- 2429.
Niu, X.; Bresan, A.; Haswegawa, P.M. and Pardo, J.M. (1995).  Ion homeostasis in NaCl stress environments. Plant Physiol., 109:0735-742.
Ono, T. (2000). Effects of lanthanide substitution at Ca 2+ site on the properties of the oxygen evolving center of photosystem II. J. Inorg. Biochem., 82(1-4): 85-91.
Prescott, G.W. (1978).  How to know fresh water algae.William .C. Brown Company Publishers.
Qin, C. and WBR Wang, X. (2002). The Arabidopsis Phospholipase D Family. Characterization of a Calcium-Independent and Phosphatidylcholine-Selective PLD1 with Distinct Regulatory Domains. Plant Physiol., 128: 1057-1068.
Rai, A. K. and Abraham, G. (1993). Salinity tolerance and growth analysis of the Cyanobacterium Anabaena doliolum. Bull. Environ. Contam. Toxicol., 51: 724- 731.
Rai, A. K. and Tiwari, S. P. (1999). NO3-nutrition and salt tolerance in the Cyanobacterium Anabaena sp. PCC 7120 and mutant strains. J. Appl. Microbiol.,  86: 991- 998.
Rao, V. (2001). Calcium mediated signal transduction in plants: A perspective on the role of Ca and CDPKs during early plant development. J. Plant Physiol., 158(10): 1237-1256. 
Reynose, G. T. and De-Gamboa, B. A. (1982).  Salt tolerance in the fresh water algae Clamydomonas reinhardtii. Comp. Biochem. Physiol., 73A(1): 95-99.
Senthil, C.; Roychoudhury, P. and Kaushik, B. D. (1993). Lipid profiles of halosensitive Calothrix marchica and halotolerant Calothrix bharadwajae. Indian J. Microbiol., 33(4): 281- 285. 
Sinha, R. P. and Hader, D. P. (1996). Response of a rice field cyanobacterium Anabaena sp. to physiological stressors. Environ. Exp. Bot., 36(2): 147- 155.
Suarez, D.L. and Grieve, C.M. (1988).Predecting cation ratios in corn from saline solute composition. J. Exp. Bot., 39: 605-612.
Ting, Y. P.; Lawson, F. and Prince, I. G. (1989).  Uptake of cadmium and zinc by the alga Chlorella vulgaris: Part I, Individual ion species. Biotech. Bioengen., 34:990- 999.   
Varma, A. K. and Tiwari, P. N. (1967). Rhizobium inoculation and oil content of soybean seeds (Glycine max). Curr. Sci., 20: 275.
Venkatarmam, G. S. (1969). The cultivation of algae. Indian Council of Agricultural Research, New Delhi pp. 319.
Vonshak, A. and Richmond, A. (1981). Photosynthetic and respiratory activity in Anacystis nidulans adapted to osmotic stress. Plant Physiol.,68:504-505.
Wang, Y.T. (1998).Impact of salinity on growth and flowering of a hybrid Phallaenopsis orchid. Hort. Science,  33(2):  247-250.
Willmer, C. and Fricker, M. (1996). "Stomota" 2nd edition. Chapman and Hall, London.
Wu, S.J.; Ding, L. and Zhu, J.K. (1996). SOSI, a genetic locus essential for salt tolerance and potassium acquistion. Plant Cell, 8: 617-627.
Zeng, F.; An, Y.; Ren, L.; Deng, R. and Zhang, M. (2000). Effects of lanthanum and calcium on photoelectron transport activity and the related protein complexes in chloroplast of cucumber leaves. Biol. Trace Elem. Res., 77(1): 83-91.
Zuther, E.; Schubert, H. and Hagemann, M. (1998).  Mutation of a gene encoding a putative glycoprotease leads to reduced salt tolerance, altered pigmentation, and cyanophycin accumulation in the Cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol., 180(7): 1715- 1722.