TOXIC EFFECT OF COPPER ON GROWTH, PIGMENTS, PROTEINS AND SOME ENZYMES OF NITROGEN ASSIMILATION IN THE DIAZOTROPHIC CYANOBACTERIUM ANABAENA VARIABILIS

Document Type : Original Article

Author

Botany Department, Faculty of Science, Tanta University, Egypt.

Abstract

The influence of Cu2+ toxicity on dry mass, chl.a, carotenoids, protein content, Cu2+ uptake, activities of some enzymes of nitrogen assimilation and alkaline phosphatase in the diazotrophic cyanobacterium Anabaena variabilis was evaluated.Lower Cu2+concentrations stimulated the dry weight, chl.a, and protein content, whereas, higher concentrations were inhibitory. In contrast, a prominent increase in the carotenoids content was detected in response to all Cu2+ treatments. A. variabilis showed high uptake capacity of Cu2+. The accumulation capacity is directly proportional to the external Cu2+ concentrations. A stimulation in the activities of glutamine synthetase (GS), NADH-glutamate synthetase (GOGAT), nitrate reductase (NR), nitrogenase and alkaline phosphatase (AP) in response to low Cu2+  concentrations was noted. However, higher ones inhibited the enzymes activities with different degrees. The enzymes could be arranged according to their tolerance to Cu2+ toxicity in the following order:  AP > NR > GOGAT > GS > nitrogenase.

Keywords


Abdel-Monem, H. M.; Corradi, M. G. and Gorbi, G. (1998). Toxicity of copper and zinc to two strains of Scenedesmus acutus having different sensitivity to chromium. Environ. Experimental Botany, 4o: 59-66.
Ahmed, A. M. and Osman, M. E. H. (1973). The influence of light on the  CO2-Fixation by synchronous cultures of Chlorella pyrenoidosa. Egypt. J. Bot., 16 (1-3): 319 – 323.
Ahuja, P.; Gupta, R. and Saxena, R. K. (1997).  Oscillatoria anguistissima: a promising Cu2+ biosorbent. Curr Microbiol., 35(3): 151-154.
Allen, M. M. and Stanier, S. T. (1968).  Selective isolation of blue-green algae from water and soil. J. G. Microbiol., 51: 203-206.
Alvarez, S. and Jerez, C. A. (2004). Copper ions stimulate polyphosphate degradation and phosphate efflux in Acidithiobacillus ferrooxidans. Appl Environ Microbiol., 70(9): 5177-5182.
Andrade, L. R.; Farina, M.; Gilberto, M. and Filho, A. (2004). Effects of copper on Enteromorpha flexuosa (Chlorophyta) in vitro. Ecotoxic. and Environ. Safety, 58: 117-125.
Bajguz, A. (2000). Blockade of heavy metals accumulation in Chlorella vulgaris cells by 24-epibrassinolide. Plant Physiol. Biochem., 38: 797-801.
Bossuyt, B. T. A. and Janssen, C. R. (2004). Long-term acclimation of Pseudokirchneriella subcapitata (Korshikov) Hindak to different copper concentrations: changes in tolerance and physiology. Aquatic Toxicology,68 (1):61-66.
Camm. E. L. and Stein, J. R. (1974). Some aspects of nitrogen metabolism of Nodularia spumigena (Cyanophyceae). Can. J. Bot., 52: 119-126.
Cavet, J. S.; Borrelly, G. P. and Robinson, N. J. (2003).Zn, Cu and Co in cyanobacteria: selective control of metal availability.FEMS Microbiol Rev., 27(2-3): 165-81.
Cho, D. Y.; Lee, S. T.; Park, S. W. and Chung, A. S. (1994). Studies on the biosorption of heavy metals onto Chlorella vulgaris. J. Environ. Sci. Health, A29: 389 - 409.
Cid, A.; Fidalgo, P.; Herrero, C. and Abalde, J. (1996). Toxic action of Cu on the  membrane system of a marine diatom measured by flow cytometry. Cytometry., 25: 32-36.
De Filippis, L. F.; Hampp, R. and Ziegler, H. (1981). The effects of sublethal concentrations of zinc, cadmium and mercury on Euglena a) Growth and pigments. Z Pflanzenphysiol., 101: 37-47.
 Devriese, M.; Tsakaloudi, V.; Garbayo, I.; Leon, R.; Vilchez, C. and Vigara, J. (2001).Effect of heavy metals on nitrate assimilation in the eukaryotic microalga  Chlamydomonas reinhardtii. Plant Physiol.Biochem.,39: 443-448.
 Dohler, G. (1986). Impact of UV-B radiation on (15N) ammonia and (15N)   nitrate uptake of Dictylum brightweilli. Photobiochem. Photobiophys., 11: 115-121.
Einicker-Lamas, M.; Mezian, G. A.; Fernandes, T. B.; Silva, F. L.; Guerra, F., Miranda, K.; Attias, M. and Oliveira, M. M. (2002). Euglena gracilis as a model for the study of Cu2+ and Zn2+ toxicity and accumulation in eukaryotic cells. Environ Pollut., 120(3) :779-786.
El-Naggar, A. H. (1993). Growth and some metabolic activities of Chlorella and Scenedesmus in relation to heavy metal pollution in Gharbia Governorate. Ph.D. Thesis, Bot. Depart., Fac. Science, TantaUniversity.
 El-Naggar, A. H.; Osman, M. E. H.; Dyab, M. A. and El Mohsenawy E. A.   (1999). Cobalt and lead toxicities on Calothrix fusca and Nostoc muscorum.J. Union Arab Biol, Cairo, 7(B) : 421-441.
Fisher, N. S. and Jones, G.T. (1981). Heavy metals and marine phytoplankton - correlation of toxicity and sulfhydryl binding. J. Phycol., 17 : 108 – 111.
Franklin, N. M.; Stauber, J. L. ; Markich, S. J. and Lim, R. P. (2000). pH-dependent toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp.). Aquatic Toxicol., 48: 275-289.
Garnham, G. W.; Cood, G. A. and Gadd, G. M. (1992). Kinetics of uptake and intracellular location of cobalt, manganese and zinc in the estuarine green alga Chlorella salina. Appl. Microbiol. Biotechnol., 37: 270-276.
Hardy, R. W. F.; Burns, R. C.   and Holsten, R. D. (1973). Application of the acetylene-ethylene assay for measurment of nitrogen fixation. Soil Biol. Biochem.5: 47- 81. 
Hashemi, F.; Leppard, G. G. and Kushner, D. J. (1994). Copper resistance in Anabaena variabilis. Effects of phosphate nutrition and polyphosphate bodies. Microb. Ecol., 27: 159-176.
Howe, G. and Merchant, S. (1992). Heavy metal- activated synthesis of peptides in Chlamydomonas reinhardtii. Plant Physiol. 98: 127-136.
Jeffrey, S. W. and Humphrey, G. F. (1975).  New spectrophotometricequations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz., 167 - 191.
Jensen, A. and Liaaen Jensen, S.   (1959). Quanitative paper chromatography of carotenoids. Acta Chem. Scand., 13: 1813.
Kobbia , I. A.; Hofner, W.; Naguib, M. I. and Ibrahim, Z. K. (1985). Uses of laboratory cultures of some algae to predict heavy metal toxicity VI. Effect  of various concentrations of Cd, Cr, Ni and Zn on the composition of amino acids and soluble proteins in Chlorella Fusca. Bull. Fac. Sci., Cairo Univ., 53 : 249 – 263.  
Kohlhaw, G.; Draegert, W. and Holzer, (1965). Parallel-Repression der synthese von glutamin-synthetase und DPN-abhangiger glutamat-dehydrogenase in hefe. Biochem. Zeitschrift., 341: 224-238.
Kretschmer, X. C.; Meitzner, J. L.; Gardea-Torresdey and Webb, R. (2004). Determination of Cu environments in the cyanobacterium Anabaena flos-aquae by x-ray absorption spectroscopy. Apply. Environ. Microbiology., 70(2): 771-780.
Kumar, R. G. and Dubey, R. S. (1999). Glutamine synthetase isoforms from rice seedlings: Effect of stress on enzyme activity and the protective roles of osmolytes.J. Plant Physiol., 155: 118-121.
Lam, P. K. S.; Wut, P. F.; Chan, A. C. W. and Wu, R. S. S. (1999). Individual and combined effects of cadmium and copper on the growth response of Chlorella vulgaris. Environ. Toxicol., 14: 347-353.
Lee, T. (2000). Phosphate starvation induction of acid phosphatase in Ulva lactuca L. (Ulvales, chlorophyta). Bot. Bull. Acad. Sin., 41: 19-25.
Lowry, O. H.; Roseborugh, N. J.; Farr, A. L. and Randall, R. J.  (1951). Protein measurement with the Folin phenol reagent. J Biol. Chem., 193: 265- 275.
Macro, E. and Orus, M. L. (1988). Variation in growth and metabolism with phosphorus nutrient in two cyanobacteria. J. Plant Physiol., 132: 339-344.
Mallick, N. (2004). Copper-induced oxidative stress in the chlorophycean microalga Chlorella vulgaris: response of the antioxidant system. J Plant Physiol., 161(5): 591-597.
Mallick, N. and Rai, L.C. (1999).Response of the antioxidant systems of the nitrogen fixing cyanobacteria Anabaena doliolum to copper. J.Plant Physiol.,155: 146-149.
Meers, J. L.; Tempest, T. W. and Brown, A. (1970). Glutamine (amide): 2-oxoglutarat amino transferase oxido reductase (NADP), an enzyme involved in the synthesis of glutamat by some bacteria. J.Gen. Microbiol., 64: 187-194.
Nassar, M. Z. (2000). Ecophysiological studies on phytoplankton along the western coast of Suez Gulf. Ph.D. Thesis. Fac. Sci.,Bot. Depart., Tanta University.
Olafson, R. W. (1986). Physiological and chemical characterization of cyanobacterial metallothioneins. Environ Health Perspect., 65:71-75.
Olafson, R. W.; McCubbin, W. D. and Kay, C. M. (1988).Primary- and secondary-structural analysis of a unique prokaryotic metallothionein from a Synechococcus sp. (cyanobacterium). Biochem J., 1251(3): 691-699.
Osman, M. E. H; El-Naggar, A. H.; Yanni, Y. G. and Wiesser, W. (1996). Possible inhibition sites of Cu2+ in photosynthetic electron transport of  cyanobacteria. Cytobios., 87: 89-98.
Pandy, U. and Chatterjee, C. (1999). Response of two strains of Nostoc muscorum to metal stress and salinity. Ann. Appl. Boil., 134: 259-263.
Pinto, E.; Sigaud-Kutner, T. C. S.; Leitao, M. A. S.; Okamoto, O. K.; Morse, D. and Colepicolo, P. (2003). Heavy metal- induced oxidative stress in algae. J. Phycol., 39: 1008-1018.
Pistocchi, R. (2000). Increased production of extra-and intracellular metal-ligands in phytoplankton exposed to copper and cadmium. J. Apply. Phycology, 12(3-5): 469-477.
Price, N. M. and Morel, F. M. M. (1990). Cadmium and cobalt substitution for zinc in marine diatoms. Nature, 344 : 656-660.
Rai, L. C.; Mallick, N.; Singh, J. B. and Kumar, H. D. (1991): Physiological and biochemical characteristics of a copper tolerant and a wild type stain of Anabaena doliolum under copper stress. J. Plant Physiol., 138: 68-74.
Rai, L.C.; Tyagi, B.; Rai, N. and Mallick, N. (1998). Interactive effect of UV-B and heavy metals (Cu and Pb) on nitrogen and phosphorus metabolism of a N2 fixing cyanobacterium Anabaena doliolum. Environ. Experimental Botany., 39: 221-231.
Rai, L. C.; Raizada, M.; Mallick, N.; Husaini, Y.; Singh, A. K. and Dubey, S. K. (1990). Effect of four heavy metals on the biology of Nostoc muscorum.  Biol. Met., 2(4): 229-234.
Rai, A. K. and Tiwari, S. P. (1999). Response to NaCl of nitrate assimilation and nitrogenase activity of the cyanobacterium Anabaena sp. Pcc 7120 and its mutants. J. Appl. Microbiol., 87: 877-883.
Rauser, W. E. (1995). Phytochelatins and related peptides:structure, biosynthesis and function. Plant Physiol., 109: 1141-1149.
Skowronski, T.; De-Knecht, J. A.; Simons, J. and Verkleij, J. A. C. (1998). Phytochelatin synthesis in response to cadmium uptake in Vaucheria. Eur. J. Phycol., 33: 87-91.
Singh, A. K.; Sharma, L. and Mallick, N. (2004). Antioxidative role of nitric oxide on copper toxicity to a chlorophycean alga, Chlorella. Ecotoxicol. and Environ. Safety., 59 (2): 223-227.
Singh, C. B.; Verma, S. K. and Singh, S. P. (1987). Impact of heavy metals on glutamine synthetase and nitrogenase activity in Nostoc calcicola. J. Gen. Apply. Microbiol., 33: 87-91.
Soldo, D.; Hari, R.; Sigg, L. and Behra, R. (2005). Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper. Aquat Toxicol., 71(4): 307-317.
Tabatabai, M. A. and Bremner, J. M. (1969). Use of p- nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem., 1: 301-307.
Ting, Y. P.; Lawson, F. and Prince, I. G. (1989). Uptake of cadmium and zinc by the alga Chlorella vulgaris: Part I, Individual ion species. Biotech. Bioengen., 34: 990- 999.
Trehan, K. and Maneesha, B. (1991).Effect of lead on nitrogenase and enzymes of nitrogen assimilation in a cyanobacterium Nostoc muscorum. Indian J. Exp. Biol., 29(12): 1116-1119.
Trehan, K. and Maneesha (1994).  Cadmium mediated control of nitrogenase activity and other enzymes in a nitrogen fixing cyanobacterium. Acta Microbiol. Immunol. Hung., 41(4): 441-449.
Tripathi, B.N.; Mehta, S.K. and Gaur, J.P. (2003). Differential sensitivity of Anabaena doliolum to Cu and Zn in batch and semicontinuous cultures. Ecotoxicol. Environ. Saf., 56 (2): 311-318.
Tripathi, B. N.; Mehta, S. K. and Gaur, J. P. (2004). Recovery of uptake and assimilation of nitrate in Scenedesmus sp. previously exposed to elevated levels of Cu2+ andZn2+. J.Plant Physiol., 161(5): 543-549.
Vega, J. M.; Menacho, A. and Leon, J. (1991). Nitrate assimilation by microalgae.Trends Photochem. Photobiol., 2: 69-111.
Verma, S. K.; Singh, R.K. and Singh, S.P. (1993). Copper toxicity and phosphate utilization in the cyanobacterium Nostoc calcicola. Bull. Environ. Contam. Toxicol., 50: 192-198.
Visviki, I. and Rachlin, J. W. (1991). The toxic action and interactions of copper and cadmium to the marine alga Dunaliella minuta, in both acute and chronic exposure. Arch. Environ. Contm. Toxicol., 20:271-275.
Wang, T. C.; Weissman, J. C.; Ramesh, G.; Varadarajan, R. and Benemann, J.R. (1998). Heavy metal binding and removal by Phormidium. Bull. Environ. Contam. Toxicol., 60: 739-744.
Xiaoleijin, C; Kushner, D.J. and Nalewajko, C. (1996). Nickel uptake and release in nickel resistant and sensitive strains of Scenedesmus acutus. Environ. Exper. Botany., 36: 401-411.
Yan, H.; Wang, X.; Lin, Y. and Wen, G. (2001). Toxic effects of Cu, Zn and Mn on the inhibition of Chlorella pyrenoidosa's growth.  Huan Jing Ke Xue., 22(1): 23-26.