EFFECT OF DIFFERENT CHEMICAL COMPOUNDS ON THE GROWTH OF TWO SOIL ALGAL SPECIES NOSTOC HUMIFUSUM AND OSCILLATORIA EARLEI.

Document Type : Original Article

Authors

1 Botany and Microbiology Dept., Fac. of Sci., Al-Azhar Univ. (Girl Branch).

2 Botany and Microbiology Dept., Fac. of Sci., Al-Azhar Univ.

Abstract

The current study was performed on a farm land at El-Khanka District, Kalyoubia Governorate where the land showed symptoms of increase in its salt content. Some of the physical and chemical characteristics of the collected soil samples were determined. Only two halotolerant species of algae were isolated from the soil samples containing lower total soluble salt contents.  Purification of algae from bacteria was done then subjected to a series of experiments for determination of the effect of different chemical constituents on their growth.  The results showed that the change in salinity (NaCl contents) as well as changing in carbon and nitrogen sources may have a considerable effect on the growth of the two algae species. In addition, also the major biochemical contents of the algal species were affected by the previous changes.

Allakhverdiev, S. I.; Nishiyama, Y.; Suzuki, I.; Tasaka, Y. and Murata, N. (1999). Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc. Natl. Acad. Sci. USA, 96:5862–5867.
Allakhverdiev, S. I.; Kinoshita, M.; Inaba, M.; Suzuki, I. and Murata, N. (2001). Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. Plant Physiol.125 (4): 1842-53.
Association of official agricultural chemists (1975). Official methods of analysis, 12th Ed., The A.O.A.C. Washington, D.C., USA.
Bhargava, S.; Saxena, R. K.; Pandey, P. K. and Bisen, P. S. (2003). Mutational Engineering of the cyanobacterium Nostoc muscorum for resistance to growth-inhibitory action of LiCl and NaCl. Curr. Microbiol., 47(1):5-11.
Brown, A. D. (1964). Aspects of bacterial response to the ionic environment. Bacteriol. Rev., 28: 296-329.
Chatterjee, M. T.; Khalawan, S. A. and Curran, B. P. G. (2000): Cellular lipid composition influences stress activations of the yeast general stress response element (STRE). Microbiology, 146:877–884.
Chauhan, V. S.; Singh, B.; Singh, S.; Gour, R. K. and Bisen, P. S. (2000). Isolation and characterization of the thylakoid membranes from the NaCl-resistant (NaCl(r)) mutant strain of the cyanobacterium Anabaena variabilis. Curr Microbiol., 41(5): 321-7.
De, P. K. (1939). The role of blue-green algae in nitrogen fixation in rice fields. Proc. Reg. Soc. London, 127:121-139.
Demergasso; Cecilia; Chong; Guillermo; Galleguillos and Pedro (2003). Microbial mats from the Llamará salt flat, northern Chile.Rev. chil. hist. nat. 76(3):485-499.
Derrien, A.; Ciffard, L. J. M.; Coiffard, C. and Roeck-Holtzhauer, Y. (1998). Free amino acids analysis of five microalgae. J. Appl. Phycol., 10:131-134.
Desikachary, T. V. (1959). Cyanophyta Indian Council of Agricultural Research, New Delhi, India.
Dhargaler, U. K. (1986). Biochemical studies in Ulva reticulate Forsska; Mahasagar. Bul. Nat. Inst. Oceangr., 19, 1: 45-51.
El-Ayouty, E. Y. and Ayyad, M. A. (1972). Studies on blue green algae of the Nile Delta, 1-Description of some species in a wheat field. Egypt J. Bot., 15:283-321.
Fogg, G. E. (1942). Studies on nitrogen fixation by blue-green algae. 1- Nitrogen Fixation by Anabaena cylindrical Lemm. J. Exp. Biol., 19:78-87.
Fogg, G. E.; Stewart, W. D. P.; Fay, P. and Walsby, A. E. (1973). The blue-Green Algae. 459pp. London and New York: Academic Press., ISBN 0-12-261650-2.
Friedman, I. and Galun, M. (1974). Desert algae Lichens, and Fungi, in desert biology, Brown, G.W., Ed Academic Press, New York, 165.
Garcia-Pichel, F.; Michael, K.; Ulrich, N.; and Muyzer, G. (1999). Salinity-Dependent imitation of photosynthesis and oxygen exchange in microbial mats. J. Phycol., 35: 227–238.
Geitler, L. (1932). Cyanophyceae in Rabenhorst's Kryptogamenflora, Leipzig 14:1196 pp.
Gochnaver, M B. and Kushner, D. J. (1971). Potassium binding, growth and survival of an extremely halophilic bacterium. Can. J. Microbiol., 17:17-23.
Guillard, R. R. L. and Helleburst, J. A. (1971). Growth and the production of extracellular substances by two strains of Phaeocystis Poucheti. J. Phycol., 7:330.
Gupta, U. S.; Maheshwari, K. L. and Sen Gupla, S. R. (1956). A method for obtaining algal cultures free from associated microorganisms. Curr. Sci., 25-91.
Handley, W. J. and Michelle, A.H. (2003). The distribution pattern of algal flora in saline lakes in Kambalda and Esperance, Western Australia. Master's Thesis (by Research) Master of Science. Department of Environmental Biology.
Henley, W. J., Major, K. M. and Hironaka J. L. (2002). Response to salinity and heat stress in two halotolerant chlorophyta algae. J. Phycol., 38:757-766.
Holden, J.T. (1962). The composition of microbial amino acid pools. In amino Acid Pools p.73. Edited by J.T. Holden. Amsterdam: Elsevier Publ. Co.
Hoshaw, R. W. and Rosowshi, J. R. (1973). Methods of Microscopic Algae in Stein, J. R., ed., Hand Book of phycological methods, CambridgeUniversity press. London, New York, Sidney.
Hua, S. T.; V. Y.; Lichens, G. M. and Noma, A. T. (1982). Accumulation of amino acids in Rhizobium sp. strain WR 1001 in response to sodium chloride salinity. Appl. Environ. Microbiol., 44(1):135-140.
Incharoensakdi, A. and Wangsupa, J. (2003). Nitrate uptake by the halotolerant cyanobacterium Aphanothece halophytica grown under non-stress and salt-stress conditions. Curr Microbiol., 47(3):255-9.
Jackson, M. L. (1967). Soil chemical analysis prentice-Hall of India private New Delhi, India.
Kelly, P.; Nevin, Kevin, T.; Finneran, and Derek, R. (2003). Microorganisms Associated with Uranium Bioremediation in a High-Salinity Subsurface Sediment Appl. Environ. Microbiol., 69(6): 3672–3675.
Kobbia, I. A. (1981). Seasonal variations of Phytoplankton in the salt Marshes of Egypt. Egypt J. Bot., 24(3):191-201.
Koujima, I; Hayashi, H.; Tomochika; Okabe, A. and Kanemusa, Y. (1978). Adaptation changes in proline and water content of Staphylococcus aureus after alteration of environmental salt concentration. Appl. Environ. Microbiol., 35: 467-470.
Krumbein, W. E.; Gorbushina, A. A. and Holtkamp-Tacken, E. (2004). Hypersaline microbial systems of sabkhas: examples of life's survival in "extreme" conditions. Astrobiology, 4(4):450-9.
Kushner, D. J. (1978). Microbial life in extreme environment. Academic Press London.
Larsen, H. (1962). Halophilism. In the Bacteria: a Treatise on Structure and Function, eds. Gunsalus, I.C. and Stanier, R.Y., New York and London: Academic Press, 4:297-342
Litchfield, C. D. (1998). Survival strategies for microorganisms in hypersaline environments and their relevance to life on earlyMars. Meteorit Planet Sci., 33(4):813-9.
Lowry, O. H.; Resebrought, N. J.; Furr, A. L. and Randall, R. J. (1951). protein measurement with folin phenol reagent. J. Biol. Chem., 193:265-275.
Marker, A. F. H. (1965). Extra cellular carbohydrate liberation in the flagellates Isochrysis galbana and Prymmnesium parvum. J. Mar. Bio. U.K., 45, 755.
Metting, B. (1981). The systematic and ecology of soil algae. Bot. Review, 47:195-312.
Michelle-Anne, H. (2003). The distribution pattern of algal flora in saline lakes in Kambalda and Esperance, Western Australia. Library and Information Service P.1-4.
Mohsen, A. F.; Kharboush, A. M.; Khaleafa, A. F.; Metwalli, A.; and Azab, I. (1975). Amino acid pattern and swasonal variation in some marine algae from Alexandria. Botanica marina, 18:167-178.
Moisander, P. H.; McClinton, E. and Paerl, H. W. (2002). Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria. Microb. Ecol., 43(4):432-442.
Munda, I. M. and Gubensek, F. (1976). The amino acid content of some benthic marine algae from Northern Adriatic. Botanica marina, 29:367-372.
Neihardt, F.C. (1963). Effect of environment on the composition of bacterial cells. Ann. Rev. Microbiol., 17: 16-80.
Nicklisch, A. (1992). The interaction of irradiance and temperature on the growth rate of Limnothris redeka and its mathematical description. Algolgical studies, 63:1-18.
Page, A. L.; Miller, R. H. and Keeney, D. R. (1982). Methods of soil analysis Part 2: Chemical and microbiological properties. Amer. Soc. Of Agron Madison, Wisconsn, U.S.A.
Pia, H.; Moisander; Ernest; McClinton Hans, W.; and Paerl, F. (2002). Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria. Microbial Ecology, 43:432-442.
Pick, U. (1998). Dunaliella –A Model Extremophilic alga. Israel Journal of Plant Sciences, 46:131-139.
Piper, C. S. (1950). Soil and plant analysis Univ. of Adelaide press Australia.
Raven, J. A. and Geider, R. J. (1988): Temperature and algal growth. New Phytol., 110:441.
Reinhold, L.; Volokita, M.; Zenvirth, D. and Kaplan, A. (1984). Is HCO3 transport in Anabaena Na+ symport. Plant Physiol., 76:1090.
Salah-El-Din, R. A. (1994). Contribution to the biological and phytochemical studies of marine algal vegetation on the coats of red sea and Suez Canal (Egypt). Ph.D. Thesis Botany Deparment, Faculty of Science, Al-Azhar Unversity, Cairo, Egypt, 234.
Schulle, H. (1968). Okologische und physiologische unters uchungen anplanktonalgen des titisees, Ph.D.  thesis, Freiburg, Germang [In Algae and Element cycling in wetlands Lewis Publishers in an impint of CRC press, 1995].
Singh, D. P. and Kshatriya, K. (2002). NaCl-induced oxidative damage in the cyanobacterium Anabaena doliolum. Curr Microbiol., 44(6): 411-7.
Soeder, C. and Stengel, E. (1974). Physiochemical factors affecting metabolism and growth rate. In Algal Physiology and Biochemistry,Stewart, W.D.P., Ed., Blackwell Scientific Publications, Oxford, London, Edinburgh and Melbbourne.
Standard Methods for the Examination of water and Waste water (1989). Aplla AWWA, Wpef, Washingtonian Dc. US Epa., Quality for Water, WashingtonDC.
Staub, R. (1961). Ernahrunge physiologish aurakologische untersuchengan an der Planktischen Blaualg Oscillatoria rubescence D.C Scheweiz, Zeitschr Hydrobiologie, 23:1982-1983.
Stewart, E. A. (1974). Chemical analysis of ecological material. Black Scientific Publication, Oxforg, London.
Tan, N. F. Y. and Wong, Y. S. (1995). Waste water treatment with microorganisms. The commercial press (H.K.) Ltd 2D Finnie St. Quarry Bay, Hong Kong.
Teaumroong, N.; Innok, S.; Chunleuchanon and Boonkerd, N. (2002). Diversity of nitrogen-fixing Cyanobateria under varios ecosystems of Thailand World J. of Microbiol. and Biotech., 18:673-682.
Tempest, D. W. and Meers, J. L. (1970). Influence of environment on the content and composition of microbial free amino acid pools. J. Gen. Microbiol., 64: 171-185.
Thomas, S. P. and Shanmuga, S. (1991). Osmoregulatory role of alanine during salt stress in the nitrogen fixing cyanobacterium Anabaena sp. 287. Biochem Int., 23(1): 93-102.
Umbriet, W. W.; Burris, R. H.; Stauffer, J. F.; Cohsen, W. J.; Lee Page, G. A.; Patter, V. R. and Schneider, W. C. (1969). Manometric techniques, a manual describing methods applicable to the study of tissue metabolism, Burgess Publishing Co. USA., 239.
Wydro, R. W; Madira, W.; Hiramatsu, T.; Kogut, M. and Kushner, D. J. (1977). Salt sensitive in vitro protein synthesis by moderately halophilic bacterium. Nature London, 269: 824-825.