EFFECT OF NITROGEN STARVATION ON SOME METABOLIC ACTIVITIES OF OSCILLATORIA ACUTISSIMA KUFFERATH AND SCENEDESMUS OBLIQUUS (TURP.) KÜTZ. WITH SPECIAL REFERENCE TO INDUCED CHANGES IN FATTY ACIDS PATTERN.

Document Type : Original Article

Authors

Botany Department, Faculty of Science, Tanta University, Tanta, Egypt.

Abstract

Oscillatoria acutissima (cyanobacteria) and Scenedesmus obliquus (green alga) were cultured under nitrogen starvation conditions and evaluated for growth and some metabolic activities. Under nitrogen starvation condition pigments, protein, saponification values and lipase activity were decreased, while carbohydrate contents were increased for tested organisms. At the same time, iodine number increased in O. ocutissima, and decreased in S. obliquus. Infera red analysis showed reduction in the concentration of amino group in lipid materials of both organisms. However, GLC analysis cleared that nitrogen was significantly reduced in the lipid materials. The intra-cellular fatty acids of O. acutissima showed reduction in the total saturated fatty acids and increase in the total unsaturated acids, meanwhile S. obliquus recorded the opposite trend.

Keywords


Allen, M. M. and Stanier, S. T. (1968). Selective isolation of blue-green algae from water and soil. J. G. Microbiol., 51:302-308.
Association of official Agricultural Chemists (1960). Official methods of analysis. 9th ed. Washington DC, USA.
Bennett, A. and Bogorad, L. (1973). Complementary cromatic adaptation in filamentous blue - green algae. J. Cell Biol., 58:419-435.
Bimbo, A. P. (1987). The emerging marine oil industry. J. Am. Oil Chem. Soc., 64:706-711.
Chman, K. G. and Jangaard, P. M. (1973). Factorial distillation of herring oil methyl esters. J. Ass. Agric. Chem., 45:67-72.
Chu, W. L.; Siew-Moi, P. and Swee-Hock, G. (1995). Influence of carbon source on growth, biochemical composition and pigmentation of Ankistrodesmus convlutus. J. Appl. Phycol., 7:59-64.
Cohan, Z.; Vonshak, A. and Richmond, A. (1987). Pharmaceutical interest of some unsaturated fatty acids. Phytochem., 26:2255-2262.
Cranwell, P.A.; Jawarski, G.H. and Bickley, H. M. (1990). Hydrocarbons, sterols, esters and fatty acids in six fresh water chlorophytes. Phytochem., 29:145-151.
Dowiadar, S. A. (2002). Assessment of the influence of Cyanobacterium Anabaena oryza on growth and some physiological activities of Sorghum bicolor L. Az. J. Pharm. Sci., 29:1-18.
Emdadi, D. and Berland, B. (1989). Variation in lipid class composition during batch growth of Nannochloropsis salina and Pavlova lutheri. Mari. chem., 26:215-225.
Gordillo, F.J.; Jimenez, C.; Figueroa, F. L. and Niell, F. X. (1999). Effects of increased atmospheric CO2 and N supply on photosynthesis, growth and cell composition of the cyanobacterium Spirulina platensis. J. Appl. Phycol., 10:46-469.
Hankin, L. and Anagnostakis, M. (1975). The use of solid media for detection of enzyme produced by fungi. Mycolog., 67:597-607.
Harvey, G.; Bradshaw, S. A.; Hara, S. C.; Eglnton, G. and Corner, E. D. (1988). Lipid composition of the marine dinoflagellate Scrippsiella trochoidea. Phytochem.,27: 1723-1729.
Jonsson, U. and Snygg, B. G. (1974). Lipase production activity as a function of incubation time, pH and temperature of four lipolytic micro-organisms. J. Appl. Bact., 37: 571-581.
Kochert, G. (1973). Carbohydrate determination by the phenol-sulphoric acid method. In: hand book of phycological and biochemical methods. Cambridge University Press, Cambridge,UK.
Kuhl, A. (1962). Zur physiologic der speicherung organischer phosphate in Chlorella. Biet. Physiol. Morphol. Algen. Gustav fisher Verlag. Stuttgar, Germany. pp157.
Lowry, O. M.; Rosebrough, N.J.; Farr, L. A. and Randall, R. J. (1951). Protein measurements with the Folin Phenol reagent. J. Biol. Chem., 193:257-265.
Mckinney, G. (1941). Absorption of light by chlorophyll solutions. J. Biol.Chem., 140:315-322.
Mendoza, H.; Jimenez, M.; Garcia-Reina, G. and Ramazanov, Z. (1996). Low temperature induced β-carotene and fatty acid synthesis and ultrastructural reorganization of the chloroplast in Dunaliella salina. Eur. J. Phycol., 31:329-331.
Mohammady, N. G. (2001). Lipid composition of six marine chlorophytes using infrared technique. Az. J. Pharm. Sci., 28:18-25.
Morris, G. J. and Clarke, A. (1978). The dry preservation of Chlorella. 4- Accumulation of lipid as a protective factor. Arch. Microbiol., 119(2):153-156.
Mukamedzhanov, B.; Smailov, S.; Sapko, O.; Kunaeva, R.; Lee, A.; Shaikhin, S. and Iskakov, B. (1991). The role of phenolic compounds at the level of gene expression in plant cells. Plant  Physiol., 82:30-36.
Omar, H. H. (2002). Allelopathic effect of some Chlorococcales species. Az. J. Microbiol., 55:72-85.
Piorreck, M.; Baasch, K. and Pohl, P. (1984). Biomass production, total protein, chlorophylls, lipids and fatty acids of fresh water green and blue- green algae under different nitrogen regimes. Phytochem., 23(2):207-216.
Plumer, D.T. (1978). An introduction to practical biochemistry 2nd ed. pp. 208.
Prescott, G.W. (1962). Algae of Western Great Lakes Area. W.M.C. Brown Co. Inc. Dubuque. Iowa. USA.
Prescott, G.W. (1975). Algae of the western great lakes area. Department of Botany and Pathology Michigan State Uni. East Lansing, Michigan, USA.
Princen, L. H. (1982). Chapter 6- oil production. Economic Botany. 36:302-312.
Reed, R. H.; Richardson, D. L.; Warr, S. R.; Stewart, W. D. (1984). Carbohydrate accumulation and osmotic stress in cyanobacteria. J. Gen. Microb., 130:1-4.
Rhodes, P. R. and Matsuda, K. (1976). Water stress, rapid polyribosomes reduction and growth. Plant Physiol., 58:63-635.
Roessler, P.G. (1988). Changes in the activities of various lipid and carbohydrate biosynthetic enzymes in the diatom Cyclotella cryptica in response to silicon deficiency. Arch. Biophys., 267:521-528.
Said, F.; Amer, M. M.; Sayed, A. K. and Said, A.A. (1964). New method for the determination of iodine value. J. Pharm. Sci. UAR., 3:73-81.
Sato, N. and Murata, N. (1982a). Lipid biosynthesis in the blue-green, Anabaena varibilis. I. lipid classes. Biochem. Biophys. Acta., 710: 271-278.
Sato, N. and Murata, N. (1982b). Lipid biosynthesis in the blue-green, Anabaena varibilis. II. Fatty acids and lipid molecular species. Biochem. Biophys. Acta., 710:279-289.
Sierra, G. (1957). A simple method for the detection of lipolytic activity of microorganisms and some observation on the influence of the contact between cells and fatty substances. Antonie Van Leeuwenhock Ned. Tijdschr. Hyg., 23:15- 22.
Simopoulos, A. P. (1995). Plants in human nutrition. World Review of Nutrition and Dietetics., 77-87.
Sriharan, S.; Bagga, D. and Sriharan, T. (1990). Effects of nutrients and temperature on lipid and fatty acid production in the diatom Hantzshia DI-60. J. Appl. Bioch. and Biotech., 24/25:309-316.
Takeda, H. and Hirokawa, T. (1978). Studies on cell wall of Chlorella.I. Quantitative change in cell wall polysaccharides during the cell cycle of Chlorella ellipsoida. Plant and Cell Physiol., 19(4):591-598.
Vergara, J. J. and Niell, F. X. (1993). Effect of nitrate availability and irradiance on internal nitrogen constituents in Corallina elongata (Rhodophyta). J. Phycol., 29:285-293.
Xu, X. Q. and Beardall, J. (1997). Effect of salinity on fatty acid composition of green micro-algae from a Antarctic hypersaline lake. Phytochem., 45:655-658.