IN SITU, EFFECT OF STOCK DENSITY OF OREOCHROMIS NILOTICUS (L.) FRY ON WATER QUALITY AND PLANKTON COMMUNITIES

Document Type : Original Article

Authors

1 National Institute of Oceanography and Fisheries, 101 Kasr Al-Ainy St, Cairo, Egypt

2 Faculty of Science, Benha University, Benha, Egypt

Abstract

Nile tilapias; Oreochromis niloticus (L.) were selected from River Nile during autumn (2004) to estimate the impact of its stock density on some physicochemical characteristics and plankton assemblage inhabiting the Nile water. Results revealed slight decrease in pH values with increase of incubation time and fish densities. Ammonium-N was higher than nitrite and nitrate concentrations. Total organic nitrogen (TON) and total organic phosphorus (TOP) were much higher than the corresponding values of inorganic forms. Chlorophyceae, Bacillariophyceae and Cyanophyceae were the prevailing algae while Chrysophyceae, Cryptophyceae and Dinophyceae were scarcely occurred. The small zooplankon, like rotifers, especially Keratella cochlearis (Gosse)  and K. tropica (Apstein) were the most dominant organisms in the predation aquaria, Statistical analysis revealed the significant effect of fish densities and incubation time on green algae and diatoms. Also, the current data showed a significant impact of the stock fish density on zooplankton communities. Phytoplankton densities decreased gradually with time in aquaria stocked with 4 and/or 16 fishes and increased with that stocked with 8 or 12 fishes after 48 hours. Also, zooplankton communities increased after 48 hour. Therefore, the stock density of O. niloticus (L) should be increase from 0.8 to 1.6 g l-1in fish farms derive its water from River Nile. Also, tilapia culture in fish farms can be depend to a large extent on natural plankton production from Nile water.

Keywords


Abdel-Tawwab, M. and H.I. El-Marakby (2004). Length-weight relationship, natural food and feeding selectivity of Nile tilapia; Oreochromis niloticus (L.) in fertilized earthen ponds. In: R. Bolivar; G. Mair and K. Fitzsimmons (eds.), Sixth International Symposium on Tilapia in Aquaculture, 14-16 September 2004, Manila, Philippines, pp. 500-509.
APHA (1995). Standard Methods for the Examination of Water and Waste Water '19th 'A.P.H.A. AWWA.WPCF.  American Public Health Association 1015.15th st.N.W.Washinton D.C. 2005.
Benndorf, J. (1992). The control of the indirect effects of biomanipulation. Freshwater biological association, 82-93.
Brett, M.T. & Goldman, C.R. (1996). A meta-analysis of the freshwater trophic cascade. Proc. Acad. Sci. USA, 93, 7723-7726.
Carpenter, S.R. & Mitchell (eds) (1993). The trophic cascade in lakes. Cambridge studies in ecology. Cambridge University Press, 358 pp.
Diana, J.S., Dettweiler, D. & Lin, C. K. (1990). Effect of Nile tilapia (Oreochromis niloticus) on the ecosystem of aquaculture ponds, and its significance to the trophic cascade hypothesis. Can. J. Fish. Aquat. Sci., 48, 183-190.
Elhigazi, F.A., Haider, S. A. & Larsson, P. (1995). Interactions between Nile tilpia (Oreochromis niloticus) and cladocerans in ponds (Khartoum, Sudan): Hydrobiologia, 307, 263-272.
Ellis, K.V. (1989). Surface water pollution and its control. Environ. Health. Eng. Univ., 366 pp.
Findlay, D.L., Kasian, S.E.,  Hendzel, L.L., Schindler, G.W. & Shearer, E.U. (1994). Biomanipulation of lake 221 in the experimental lake area (ELA): Effects on phytoplankton and nutrients. Can. J. Fish. Aquat. Sci. Vol. 51 (12), 2794-2807.
Golachowska. J. (1986). Diurnal fluctuation of phosphorus forms in lake water and seston. Pol. Arch. Hydrobiol. 33: 165-175.
Gulati, R.D., Lammens, E.H.,  Meijer; R.R., Donk, M.L. & Van-eds, E. (1990). Bimanipulation tool for water management, Hydrobiologia, 200/201, 251-261.
Hall, D.J.,  Cooper, W.E., & Werner, E.E. (1970). An experimental approach to the production dynamics and structure of freshwater animal communities. Limnol.Oceanogr. 15, 839-928.
Houlihan, D., Boujard, T. and Jobling, M. (2001). Food Intake in Fish. Blackwell Science, Oxford, UK, pp. 130-143.
Hrbacek, J., Dvorakova, M., KIorinek, V., & Pzrochazkova, L. (1961). Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association. Verh. Int. Ver. Limnol. . 14, 192-195.
Jeppesen, E., Sondergaard, M., Sotkkjaer, O., Mortensen, E. & Kristensen, P. (1996). Interactions between phytoplankton, zooplankton and fish in a shallow, hypertonic lake: a study on phytoplankton collapse in lake Sobyard, Denmark, Hydrobiologia 191, 139-148.
Klinge, M., Grimm, M.P., & Hosper, S.H. (1995). Integrated Water Resources Management, Eutriphication and ecological rehabilitation of Dutch lakes 31(8), 207-218.
Mageed, A.A., & Konsowa, A.H. (2002). Relationship between phytoplankton, zooplankton, and fish cultures in a freshwater fish farm, Egypt. J. Aquat. Biol. & Fish., 6 (2), 183-206.
McKenzie, H.A., and Wallace, H.S. (1954). The Kjeldahl determination of nitrogen: A critical study of digestion conditions. Aust. J. Chem. 7, 55-70.
Meade, J.W. (1985). Allowable ammonia for fish culture. Prog. Fish-Cult., 7, 135-145.
Ocon, M. and Martinez, M. (2001). Tilapia en Cocibolca “agita la marea” La Prensa  19 Nov 2001 p.1B
Perez-Fuentetaja, A., McQueen, D.J., & Rmcharan, C.W. (1996). Predator- induced bottom-up effects in oligotrophic systems, Department of Biology, State University of New York, College of Environmental Science and Forestry, Syracuse New York 13210, USA, Hydrobiologia 317, 163-176.
Piyasiri, S. & Perera, N. (2001). Role of Oreochromis hybrids in controlling Microcystis aeruginosa blooms in the Kotmale Reservoir. In: S. S. de Silva (ed.), Reservoir and Culture-Based Fisheries: Biology and Management. Proceeding of an International Workshop. 15-18 February, 2000, 2001, Bangkok, Thailand, pp 137-148.
Sondergaard, M., Jeppesen, E.,  Kristensen, P., & Sortkjaer, O. (1990). Interaction between sediment and water in shallow and hypertrophic lake: a study on phytoplankton collapses in Lake Sobygard. Denmark. Hydrobiologia, 191, 129-138.
Stickney, R. R., J. H. Hesby & W. A. Isbell. (1979). Growth of Tilapia nilotica in ponds with different histories of fertilization. Aquaculture 17: 189-194.  
Stumm, W., & Morgan, J.J. (1981). Aquatic chemistry. An introduction emphasizing chemical equilibria in natural waters. 2nd Ed. John Wiley and Sons. NY., 780pp.
Touliabah, H.S. (1992). Relations between fertilization and phytoplankton position and productivity in Serw Fish farms. M. Sc., Girl coll. Ain shams Univ. 213 pp.
Turker, H., Eversole, A.G. & Burne, D.E. (2003). Effect of Nile tilapia, Oreochromis niloticus (L.), size on phytoplankton filtration rate. Aquaculture Research, 34(12), 1087-1091.
Vanni, M.J. (1987). Effects of nutrients and zooplankton size on the structure of a phytoplankton community. Ecology 68 (3), 624-635.