HUMIC ACID STIMULATION OF GROWTH AND OPTIMIZATION OF BIOCHEMICAL PROFILES IN TWO MICROALGAL SPECIES PROPOSED AS LIVE FEEDS IN AQUACULTURE

Document Type : Original Article

Author

Department of Botany, Faculty of Science, Muharram Beck, Alexandria University, Alexandria, Egypt.

Abstract

A series of batch culture experiments of two marine microalgae Dunaliella salina Teodoresco and Nannochloropsis salina Hibberd was conducted at various humic acid (HA) concentrations (0.0, 0.1, 0.2, 0.3, 0.4, 0.5 mgL-1) to evaluate the stimulatory potential of HA on the growth (expressed as a biomass concentration), pigment production (chlorophyll a and carotenoids) and C/N ratio. The impact of HA on the proximate composition (moisture, ashes,dietary fiber, crude lipid, available carbohydrates, crude protein and the energy content) was also considered. Results demonstrated a highly significant positive effect of HA on growth, pigment production and proximate analysis (P≤ 0.01). The response of both investigated microalgae to HA show optima in the range of concentration studied, which makes it a low cost-high yield investment.However, C/N ratio in D. salina showed a gradual decrease upon addition of HA. On the other hand a slight increase in the ratio was observed in N. salina.

Keywords


Becker, E. W. (1994). Microalgae biotechnology and microbiology. CambridgeUniversityPress, UK.
Becker, E. W. and Venkataraman, L. V. (1982). Biotechnology and exploitation of algae-the Indian approach. Eschborn: German Agency for Technical Cooperation.
Boussiba, S.; Vonshak, A.; Chohen, Z.; Avissar, Y. a. and Richmond, A. (1987). Lipid and Biomass production by halotolerant microalga Nannochloropsis salina. Biomass, 12:17-24.   
Brown, C. J. (1969). Effect of coal derived humic acid on growth and chlorophyll content of Chlorella vulgaris. M. S. Thesis, U. of North Dakota, USA., pp. 35.
Brown, M. R. (2002). Nutritional value and use of microalgae for aquaculture. In: Cruz-Suárez L. E., Ricque-Marie D., Tapia-Salazar M., Gaxiola-Cortés M. G.,     Simoes N. (Eds.). Avances en Nutrición Acuicola VI. Memorias del VI Simposium Internacional de Nutrición Acuicola. 3 al 6 de Septiembre del 2002. Cancú, Quintana Roo, México.
Brown, M. R.; Jeffrey, S. W.; Volkman, J. K. and Dunstan, G. A. (1997). Nutritional properties of microalgae for mariculture. Aquaculture, 151: 315-331.
Canellas, L. P.; Olivares, F. L.; Okorokova-Facanha, A. L. and Facanha, A. R. (2002). Humic acids isolated from Earthworm compost enhance root elongation,    lateral root emergence, and plasma membrane H+-ATP ase activity in Maize roots. Plant Physiol., 130:1951-1957.
Canizares, R. O.; Molina, G. and Dominguez, A. R. (1994). Compositión quimica de dos microalgas marinas utilizadas como alimento en maricultura. Cryptogamie Algologie, 15:121-133.
Carlsson, P.; Granéli, E.; Tester, P. and  Boni, L. (1995). Influences of riverine humic substances on bacteria, protozoa, phytoplankton and copepods in a coastal plankton community. Mar. Ecol. Prog. Ser., 127:213-221.
Chen, Y. and Aviad, T. (1990). Effects of humic substances on plant growth. In Humic Substances in Soil and Crop Science: Selected Readings. MacCarthy P, Clapp C E, Malcolm R L,  Bloom P R (eds) Pp. 161-186, American Society of Agronomy Inc., Soil Science of America, Inc., Madison, WI., USA.
Coates, J. D.; Cole, K. A.; Chakraborty, R.; O,Connor, S. M. and Achenbach, L. A. (2002). Diversity and Ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration. Appl. Environ. Microbiol., 67:2445-2452.
Doblin, M. A.; Blackburn, S. I. and Hallegraeff, G. M. (2000). Intraspecific variations of the toxic dinoflagellate Gymnodinium catenatum. J. Plankton Res., 22: 421-432.
Doblin, M. A.; Blackburn, S. I. and Hallegraeff, G. M. (1999). Growth and biomass stimulation of the toxic dinoflagellate Gymnodinium catenatum (Graham) by dissolved organic substances. J. Exp. Mar. Biol. Ecol., 236: 33-47.
Fabregas, J. and Herrero, C. (1986). Marine microalgae as a potential source of minerals in fish diets. Aquaculture, 51: 237-243.
Fernández Sevilla, J. M. (1995). Estudio del crecimientno simultáneo fotolimitado y fotoinhibido de la microalga marina Isocrysis galbana. Productividad en ácidos grasos polinsaturados n-3. Ph D. Thesis. Universidad de Alemeria.
Fried, A.; Tietz, A.; Ben-Amotz, A. and Einchenberger, W. (1982). Lipid composition of the halotolerant alga Dunaliella bardawil. Biochem. Biophys. Acta, 713:419-420.
Frimmel, F. H. and Christman, R. F. (1988). Humin substances and their role in the environment. 1st ed. Vol. 1, Wiley-Interscience Publication, New York, USA.
 
 
 
Gagnon, R.; Evasseur, M.; Weise, A. M.; Fauchot, J.; Campbell, P. G. C.;        Weissenboeck, B. J.; Merzouk, A.; Gosselin, M. and Vigneault, B. (2005). Growth stimulation of  Alexandrium Tamarense (Dinophyceae) by humic substances from the Manicouagan River (Eastern Canada). J. Phycol., 41: 489-497.
Gatenby, C. M.; Orcutt, D. M.; Kreeger, D. A.; Bruce, C. P.; Jones, V. J. and Neves, R. J. (2003). Biochemical composition of three algal species proposed as food for captive freshwater mussels. J. Appl. Phycol., 15:1-11.
Goering, H. K. and Van Soest, P. J. (1970). Forage fiber analysis. Handbook no. 379. WashingtonDC: US Department of Agriculture, USA.
Granéli, E.; Carlsson, P. and Legrand, C. (1999). The role of C, N and P in dissolved and particular organic matter as a nutrient source for phytoplankton growth including toxic species. Aquat. Ecol., 33:17-27.
Hansmann, E. (1973). Pigment analysis. In Handbook of phycological methods, culture methods and growth measurements. Stein J R (editor), London, Cambridge University Pres, PP. 359-368.
Kochert, G. (1978). Quantification of the macromolecular components in microalgae. In Handbook of Phycological methods.Physiological and biochemical methods Hellebust J, Cragie S (eds), London, Cambridge University Press, PP. 189.
Koukal, B.; Gueguen, C.; Pardos, M. and Dominik. J. (2003). Influence of humic substances on the toxic effects of cadmium and zinc to the green alga Pseudokirchneriella subcapitata. Chemosphere, 53:953-961.
 Kreeger, D. A. and Langdon, C. J. (1993). Effect of dietary protein content on growth of juvenile mussels Mytilus trossulus (Gould 1850). Biol. Bull., 185:123-129.
Legrand, C. and Carlsson, P. (1998). Uptake of high molecular weight dextran by the dinoflagellate Alexandrium catenella. Aquat. Micob. Ecol., 16: 81-86.
Loeblich, L. A. (1982). Photosynthesis and pigments influenced by light intensity and salinity in the halophilic Dunaliella salina (Chlorophyta). J. Mar. Biol. Ass.UK,62:493-508.
 Lubián, L. M.; Montero, O.; Garrido-Moreno, I.; Huertas, E.; Sobrino, C.; Gonzalez-Delvalle, M. and Pares, G. (2000). Nannochloropsis (Eustigmatophyceae) as a source of commercially valuable pigments. J. Appl. Phycol., 12: 249-255.
Mackowiak, C. L.; Grossi, P. R. and Bugbee, B. G. (2001). Beneficial effects of humic acid on micronutrient availability to wheat. Soil Sci. Soc. Am. J., 65:1744- 1750.
 
 
Markovits, A.; López, L.; Costa, E. and Lutz, M. (1991). Microalgas como Alimento Humano Potencial (Ι). Evaluacion quimica y Biológica de phaedocthylum tricornutum. Alimentación Equipos y Tecnologia., 87:119-123.
Mirón, A. S.; Garcia, C.; Camacho, F. G.; Grima, E. M. and Chisti, Y. (2002). Growth and biochemical characterization of microalgal biomass produced in bubble column and airlift photobioreactors: studies in fed-batch culture Enzyme. Microb. Technol., 31:1015-1023.
Mohammady, N.G. and Fathy, A. A. (2007). Humic acid mitigates viability reduction, lipids and fatty acids of Dunaliella salina and Nannochloropsis salina grown under nickel stress. Int. J. Bot., 3:64-70.
Mohammady,N. G.; Chen, Y.C.; El-Mahdy, A. and Mohammad, R. F. (2005) Physiological responses of eustigmatophycean Nannochloropsis salina to     aqueous diesel fuel pollution. Oceanologia, 47:75-92.
Mohammady, N. G. (2004). Total, free and conjugated sterolic forms in three microalgae used in mariculture. Z. Naturforsch., 59:619-624.
Muller-Wegener, U. (1988). Interaction of humic substances with biota. In Humic substances and their role in the Environment,Frimmel F H, Christman R F (eds) John Wiley and Sons, New York, USA., pp. 179-193.
Osborne, D. R. (1985). Análisis de Nutrientes de los Alimentos. Zaragoza Acribia, pp.136-153.
Piorreck, M. and Pohl, P. (1984). Formation of biomass, total protein, chlorophylls, lipids and fatty acids in green and blue green algae during one growth phase. Phytochemistry, 23:217-223.
Rebolloso Fentes, M. M.; Acién Fernández, G. G.; Sánchez Pérez, J. A and Guil Guerrero, J. L. (2000). Biomass nutrient profiles of the microalga Porphyridium cruntum. Food Chemistry, 70:345-353.
Renaud, S. M.; Thinh, L. V. and Parry, D. L. (1999). The gross composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture, 170:147-159.
Ronnestad, I.; Hellad, S. and Lie, O. (1998). Feeding Artemia to larvae of Atlantic halibut (Hippoglossus hippoglossus L.) results in lower larval vitamin A content compared with feeding copepods. Aquaculture, 165: 159-164.
Sargent, J. R.; McEvoy, L. A. and Bell, J. G. (1997). Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture, 155:117-127.
Stevenson, F. (1982). Humus chemistry: genesis, composition, reactions. John Wiley and Sons, New York, USA.
Sukenik, A.; Carmeli, Y. and Berner, T. (1989). Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. J. Phycol., l25: 686-692.
Sun, B. K.; Tanji, Y. and Unno, H. (2005). Influences of iron and humic acid on the growth of the cyanobacterium Anabaena circinalis. Biochem. Eng. J., 24:195-201.
Sunda, W. G. and Huntsman, S. A. (1998). Processes regulating cellular metalaccumulation and physiological effects: phytoplankton as model systems. Sci. Total Environ., 219:2-3.
Van Bleijswijk, J. D. L.; Kempers, R. S.; Veldhuis, M. J. and Westbroek, P. (1994). Cell and growth characteristics of type A and type B of Emiliania huxleyi (Prymnesiophyceae) as determined by flow cytometry and chemical analyses. J. Phycol., 30:230-241.
Veloza, A. J.; Chu, F-L. E and Tang, K. W. (2006). Trophic modification of essential fatty acids by hetertrophic protests and its effects on the fatty acid composition of the copepods Acartia tonsa. Mar. Biol., 148:779-788.
Vigneault, B.; Percot, A.; Lafleur, M. and Campbell, P. G. C. (2000). Permeability changes in model and phytoplankton membranes in the presence of aquatic humic substances. Environ. Sci. Technol., 34:3907-3913.
Visser, S. A. (1985). Physiological action of humic substances on microbial cells. Soil Biol. Biochem., 17:457-462.
 Whyte, J. C. (1987). Biochemical composition and energy content of six species of phytoplankton used in mariculture of bivalves. Aquaculture, 60: 231-241.