CYANOBACTERIA AS ALTERNATIVE BIOLOGICAL CONDITIONERS FOR BIOREMEDIATION OF BARREN SOIL

Document Type : Original Article

Author

Botany Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt

Abstract

In this study, synthetic and biological soil conditioners were used to screen their abilities to improvise the barren soil characters. These soil conditioners based on treatment of barren soil samples with urea and / or compost as synthetic soil conditioner or by inoculating the soil samples with Spirulina meneghiniana Zanrd. ex Gomon and / or Anabaena oryzae Fritsch as a biological soil conditioner. The data revealed that, the biological conditioner in a mixture (22.5 kg ha-1 Anabaena and 22.5kg ha-1 Spirulina supplied with 7.5 kg ha-1 urea and 7.5 kg ha-1 compost) was the most effective one. Also, the soil samples inoculated with this mixture exhibited positive activity of improving soil characters. Moreover, highly significant positive responses of the development features were appeared on lettuce plants transplanted in such soil samples.

Keywords


Abd-All, M. H.; Mahmoud, A. L. E. and Issa, A. A. (1994). Cyanobacterial biofertilizer improved growth of wheat. Phyton (Horn, Austria), 34 (1): 11-18.
Allison, F. E. and Moris, M. J. (1930). Nitrogen fixation by blue-green algae. Sci., 71: 221-223.
Banerjee, M. and Kumar, H. (1992). Nitrogen fixation by Aulosira fertilissima in rice fields. Nautralia, Sao Paulo, 17: 51-58.
Barclay, W. R. and Lewin, R. A. (1985). Microalgal polysaccharides production for the conditioning of agricultural soils. Plant and Soil, 88: 159-169.
Bergman, B.; Gallon, J. R.; Rai, A.N. and Stal, L. J. (1997). N2-fixation by non-heterocystous cyanobacteria. FEMS Microbiol Rev., 19:139–185.
Blunden, G.; Jenkins, T. and Liu, Y. W. (1997). Enhanced leaf chlorophyll levels in plant treated with seaweed extract. J. of Appl. Phycol., 8: 535-543.
de Caire, G. Z.; de Cano, M. S.; de Mule, M. C.; Palma, R. M and Colombo, K. (1997). Exopolysaccharide of Nostoc muscorum (cyanobacteria) in the aggregation of soil particles. J. Appl. Phycol., 4: 249-253.
de Cano, M. S.; de Mule, M. C. Z.; de Caire, G. Z. and Halperin, D. R. (1993). Biofertilization of rice plants with cyanobacterium Tolypothrix tenus. (40 d.) Phyton 54 (2): 149-155.
de Mule, M., Caire, G., Cano, M., Palma, R. and Colombo, K. (1999). Effect of cyanobacterial inoculation and fertilizers on rice seedings and post harvest soil structure. Communications in Soil Science and Plant Analysis, 30 (1-2): 97-107.
Desikachary, T. V. (1959). Cyanophyta. Ph.D. Thesis , Botany Dept. Fac. of Scie. Madras Univ. India.
Dong, J.; Shang, S. and Su, B. (1995). Studies on the nitrogen fixation of algae in Beijing rice field: III. The use of he isotopic N15 trace assay estimated blue-green algae nitrogen fixing contribution. Acta Agri. Univ. Pek., 21(1): 7-11.
El-Ayouty, Y. M. (1998). Soil inoculation by blue-green algae and their effects on yield attributes of different rice varieties. Proceedings, Sixth Egyptian Botanical Conference, Cairo University. November24-26. 11:221-230.
EL-Nawawy, A. S.; Lotfi, N. and Fahmy, M. (1958). Studies on the ability of some blue-green algae to fix nitrogen and their effect on growth and yield of rice plant. Agric. Res. Rev.,36: 308-320.
El-Zeky, M. M.; El-Shahat, R. M.; Metwaly G. S. and Elham, M. A. (2005). Using Cyanobacteria or Azolla as alternative nitrogen sources for rice production. J. Agric. Mansoura Univ., 30 (9): 5567-5577.
Falshini, L.; Sparvoli, E. and Tomaselli, L. (1997). Effect of Nostoc (Cyanobacteria) inoculation on soil structure and stability of clay soils. Biology and Fertility of Soil, 23 (3): 346-352.
Fletcher, J. E.  and Martin, W. P. (1948). Some effects of algae and mold in the rain crust of desert. soil. Ecol., 29: 95-100.
Ghazal, F. M. A.  (1980). Studies on enzymatic activity in rice soil inoculated with blue-green algae. M. Sc. Thesis, Fac. of Agric., Al-Azhar Univ., Cairo, Egypt.
Ghosh, T. K. and Saha, K. C. (1993). Effect of inoculation with N2-fixing Cyanobacteria on the nitrogenase activity in soil and rhizosphere of wetland rice (Oryza sativa L.). Biot. Fertil. Soil, 16: 16-20.
Goldsborough, G. and Robinson, G. C. (1996). Pattern in wetlands. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology. Freshwater benthic ecosystems. Academic, San Diego, 78–117.
Goyal, S. K. (1989). Stress compatibility in cyanobacteria. Phykos. 28: 267-273.
Grant, I. F., Roger, P. A. and Watanabe, I. 1986. Ecosystem manipulation for increasing biological N2-fixation by bluee-green algae (Cyanobacteria) in low land rice fields. Biological Agriculture and Horticulture,3: 299-315.
Grieco, E. and Desrochers, R. (1978). Production de vitamine B12 par une algae blue. Can. J. Microbiol., 24: 1562-1566.
Hardy. R. W. F., Burns, R. C. and Holsten, R. D. (1973). Application of acetylene-ethylene assay for measurement of nitrogen fixation. Soil Bio. Biochem., 5: 47-81.
Haroun, S. A. and Hossein, M. H. (2003). The promotive effect of algal biofertilizers on growth, protein pattern and some metabolic activities of Lupius termis plants grown in siliceous soil. Asian J  Plant Science, 2 (13): 944-951.
Hassan, N. A. M. (2007). Studies on the algal flora distributed at Wadi-Sannur of the Eastern- desert of Egypt. M. Sc. Thesis, Faculty of Science, Beni-Suef University, Egypt.
Hellebust, J. A. (1974). Extracellular products. In algal physiology and biochemistry. Botanical Monographs Berkeley, CA. Ed.WDP Stewart. 10: 838-865
Hesse, P. R. (1994). A textbook of soil chemical analysis, CBS Publishers & Distributors. 485, Jain Bhawan, Bhola Nath Nagar, Shahdora, Delhi-110 032 (India).
Jackson, M. L. (1976).  Soil chemical analysis. Constable. Co. Lt., London.
Kaushik, B. D. and Murti, K. G. (1981). Effect of blue-green algae and gypsum application on physico-chemical properties of alkali soils. Phykos, 20 (1 and 2) 91-94.
Kerni, P. N., Shant, P. S. and Sapru, B. I. (1981). Effect of nitrogen fixing blue-green algae on Guava seedlings (Psidium gaujava. L.). Phykos, 20 (1 and 2): 95-98.
Ladha, J. K. and Reddy, P. M. (2003). Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant Soil, 252: 151–167.
Lowe, L. E. (1993). Total and labile polysaccharide analysis. Canadian Society of Soil Science, Pp 342.
Lowery, O. H., Resebrought, N. J., Furr, . and Randall, R. J.(1951). Protein measurement with folin phenol regent. J. Biol. Chem., 193: 265-275.
Mandal, B.; Vlek P.G.L. and Mandal, L. N. (1999). Beneficial effects of blue–green algae and Azolla, excluding supplying nitrogen, on wetland rice fields: a review. Biol Fertil Soils, 28: 329–342.
Markus, D. K.; Mckinnon, J. P. and Buccafuri, A. F. (1982). Aurmated analysis of nitric, nitrate and ammonium nitrogen in soils. New Jersy, Agric. Exp. Stn. Publication no. D. 15117-84.
McCormick, P.V. and O’Dell, M. B. (1996). Quantifying periphyton responses to phosphorus in the Florida Everglades: a synoptic–experimental approach. J. North Am Benthol Soc., 151: 450–468.
Metting, B. (1981). The systematic and ecology of soil algae. Botan. Rev., 47: 195-312.
Metting, B. and Rayburn, W. R. (1983). The influence of a microalgae conditioner on selected Washington soil. An empirical study. Soil Sci. Soc. Am. J., 47: 682-685.
Metting, B.; Rayburn, W. R. and Renaud, P. A. (1988). Algae and agriculture, In Algae and human affairs, Lembi  C. A. and Waalaud, R. A. eds. Cambridge University Press, Cambridge,UK. 335-370.
Moore, R. E. (1996). Cyclic peptides and depsipeptides from Cyanobacteria: a review. J. Ind. Microbiol., 16: 134-143.
Nimah, M. N.; Ryan, J. and Chaudhry, M. A. (1983). Effect of synthetic conditioners on soil water retention, hydraulic conductivity, porosity and aggregation. Soil Sci. Soc. Am. J., 47: 742-745.
Oesterreicher, W. (1990). Ecological significant of algae in soil. Nachrichttenblatt des Deuschen Pflanzenschutzdienstes. 42(8): 122-126.
Olsen, S. R.; Colc, C. V.; Watanabe, F. S. and Dean, L. A. (1954). Estimation of available phosphorus in soil by sodium bicarbonate. U. S. Dept. Agric. Circ., 939.
Omar, H. H. (2000). Nitrogen-fixing abilities of some Cyanobacteria in sandy loam soil and exudates efficiency of rice grain germination. Egypt. J. Phycol., 1: 157-167.
Paerl, H. W.; Pinckney, J. L. and Kucera, S. A. (1995). Clarification of the structural and functional roles of heterocysts and anoxic microzones in the control of pelagic nitrogen fixation. Limnol Oceanogr., 40:634–638.
Piper, C. S. (1950). Soil and plant analysis. A monogr. From the Water Agri. Inst. Univ. of Adelaide.
Potts, M. (1996). The anhydrobiotic cyanobacterial cell. Physiol Plant, 97:788–794.
Potts, M. (1999). Mechanisms of desiccation tolerance in cyanobacteria. Eur. J. Phycol., 34:319–328.
Quesada, A.; Leganes, F. and Fernandezy-aleiente, E. (1997). Environmental factors controlling N2-fixation in Mediterranean rice fields. Microbiol. Ecology, 34:39-48.
Rodgers, G. A.; Bergman, B.; Henriksson, E. and Urdis, M. (1979). Utilisation of blue-green ass biofertilizers. Plant and Soil,52: 99-107.
Rodrigo, V. and Eberto, N. (2007). Seasonal changes in periphyton nitrogen fixation in a protected tropical wetland. Biol Fertil Soils, 43: 367–372.
Roger, P. A. and Kulasooriya, S. A. 1980. Blue-green and rice. International Rice Research Institute, Los Banos, Philippines. 113.
Roger, P. A. and Watanabe, I. (1981). Algae and aquatic weeds as source of organic matter and plant nutrients for wetland rice. The International Rice Research Institute, Philippines, In organic matter and rice, 147-168.
Schlegel, I.; Doan, N. T.; de Chazal, N. and Smith, G. D. (1999). Antibiotic activity of new cyanobacterial isolates from Australia and Asia against green algae and Cyanobacteria. J. Appl. Phycol.,10: 471-479.
Scott, J. T.; Doyle, R. D. and Filstrup, C. T. (2005). Periphyton nutrient limitation and nitrogen fixation potential along a wetland nutrient-depletion gradient. Wetlands, 25:439–448.
Shields, L. M. and Durrell, L. M. (1964). Algae in relation to soil fertility. Bot. Rev., 30: 92-128.
Silke, R.; Vigdis, T.; Frida, L. D.; Lise, Ø. and  Jörg, R. (2007). Nitrogen availability decreases prokaryotic diversity in sandy soils. Biol Fertil Soils, 43:449–459.
Singh, A. L.; Singh, P. K. and Pushp, L. (1988). Effect of different levels of chemical nitrogen (Urea) on Azolla and blue-green algae intercropping with rice. Fertilizer Research, 17: 47-59.
Singh, A. L.; Singh, P. K. and Singh, P. L. (1988). Comparative studies on the use of gree manuring, organic manuring and Azolla and blue-green algal biofertilizers to rice. J. Agric. Sci., 110 (2): 3337-343.
Singh, R. N. (1961). Role of blue-green algae in nitrogen economy of India. Indian Council Agric. Res., New Delhi, India.
Singh, V. P. and Trehan, T. (1973). Effects of extracellular products of Aulosira fertilissuna on the growth of rice seedlings. Plant and Soil, 38: 457-464.
Standard Method for Examination of Water and Wastewater (1998). 17TH AWWA-WPCF-APHA.
Tan, K. H. (1996). Soil sampling, preparation and analysis, Marcel Dekker, Inc., New York, USA.
Umbriet, W. W.; Burris, R. H.; Stauffer, J. F.; Cohen, P. P.; Johsen, W. J.; Lee Page, C. A.; Patter, V. R. and Schneider, W. C. (1969). Nanometric techniques, Manual describing methods applicable to the study of tissue metabolism. Burgess Publishing Co. USA. 239.
Venkataraman, G. S. (1981). Blue-green algae for rice production- a manual for its promotion. FAO Soils Bulletin, 64:24.
Vernon, L. P. and  Seely, G. R. (1966). The chlorophylls. Acadimic Press. New York and London.
Zar, J. H. 1984. Biostatistical analysis. 2nd Ed. Prentice. Hall, In., Englewood Cliffs, NJ.USA.