ALLELOPATHIC ACTIVITY OF SOME LOCAL CYANOBACTERIAL EXTRA-METABOLITES AGAINST SOME PATHOGENIC BACTERIA

Document Type : Original Article

Authors

Botany Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.

Abstract

Ten cyanobacterial species (Nostoc calcicola , N. commune, N. entophytum, N. minutum, N. palndosum, N. passerianum, N. punctiforme, Anabaena ambigua, A. amomala, and  A. doliolum) were isolated from the mangrove region of Ras Mohammed (Sinai, Egypt) and have been tested for their allelopathic activity that of inhibitory and / or promoting effects against two Gram positive bacteria (Bacillus subtilis and Staphylococcus aureus) and two Gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Data suggested two types of allelopathic effects: one type which always appeared in cyanobacterial medium as in the case with Nostoc minutum (medium that inhibits the growth of all tested bacterial species). The other type is induced only when Cyanobacteria are in contact with bacteria; this is the case when the growth of both Bacillus subtilis and Staphylococcus aureus were inhibited in co-culture with Nostoc commune. On the other hand, promotion effects of bacterial growth were observed when grown in cyanobacterial metabolites in most of studied cyanobacterial species.The biological assays for aqueous and methanolic extracts of the two Nostoc species revealed that both extracts for each species were not toxic at concentrations of 0.52 and 0.59 g L-1 water extract for Nostoc commune and N. minutum, respectively and 0.31 and 0.425 g L-1 for methanolic extract for Nostoc commune and N. minutum, respectively. No mortality was observed in tested mice within 72 hours

Keywords


Abdel-Raouf, N. (2004). Antimicrobial activity of Chlorella vulgaris culture filtrate against some pathogenic microorganisms. Egypt. J. Biomed. Sci., 15: 355-370.
Allen, M. M. (1968). Simple conditions for growth of  unicellular blue-green algae on plates. J. Phycol., 4: 1-4.
Bonjouklian, R; Smitka, T. A.; Doolin, L. E.; Molloy, R. M.; Debono, M.; Shaffer, S. A.; Moore, R. E.; Stewart, J. B. and Patterson, G. M. L. (1991) Tjipanazoles, new antifungal agents from the blue-green alga Tolypothrix tjipanasensis. Tetrahedron, 47:7739-7750.
Borowitzka, M. A. (1988a). Vitamins and fine chemicals from micro-algae. In: Borowitzka, M. A. Borowitzka, L. J. (Eds.), Micro-algal Biotechnology. Cambridge University Press, Cambridge,UK. pp. 211-217.
Borowitzka, M. A. (1988b). Fats, oils and hydrocarbons. In: Borowitzka, M. A., Borowitzka, L. J. (Eds.), Micro-algal Biotechnology. Cambridge University Press, Cambridge, UK. pp. 257-287.      
Borowitzka, M. A. (1995) Microalgae as sources of pharmaceuticals and other biologically active compounds. J. Appl. Phycol., 7: 3-15.
Chetsumon, A., Fujieda, K., Hirata, Y. and Miura, Y. (1993). Optimization of antibiotic production by cyanobacterium Scytonema sp. TISTR 8208 immobilized on polyurethane foam. J. Appl. Phycol., 5: 615-622.
de Bashan, L. E., Bashan, Y., Moreno, M., Lebsky, V. K. and Bustillos, J. J. (2002). Increased pigment and lipid content, lipid variety, and cell population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillium brasilense. Can. J. Microbiol., 48: 514-521.
De Cano, M. M. S., De Mulé, M. C. Z., De Caire, G. Z. and De Halperin, D. R. (1990) Inhibition of Candida albicans and Staphylococcus aureus by phenolic compounds from the terrestrial cyanobacterium Nostoc muscorum. J. Appl. Phycol., 2: 79-81.
Desikachary, T. V. (1959). Cyanophyta. Ph.D. Thesis, Botany Dept. Fac. of Sci. Madras Univ. India.
EL-Ayouty, E. Y. and Ayyad, M. A. (1972). Studies on blue-green algae of the Nile Delta, 1- Description of some species in a wheat field. Egypt. J. Bot., 15:283-321.
Esmarch, F. (1914). Unter suchungen über die verbreitung der cyanophyceen auf und inverschiedenenm Böden. Hedwigia, 55:224-237.
Felfoldy, L J. M. and Zsuzsa, F. K. (1959).  Some methodical observations on the use of antibiotics for preparing bacteria-free algal cultures. Act. Biol. Acad. Scient. Hung., 10(1): 95.
Gäumann, E. and Jaag, O. (1950). Bodenbewohnende Algen als Wuchs-stoffspender für bodenbewohnende pflanzen-pathogene Pilze. Phytopath. Z., 17: 218-228.
Gozales-Bashan, L. E.; Lebsky, V. K.; Hernandez, J. W.; Bustillos, J. J. and Bashan, Y. (2000). Changes in the metabolism of the microalga Chlorella vulgaris when coimmobilized in alginate with the nitrogen-fixing Phyllobacterium myrsinacearum. Can.J. Microbiol., 46: 653-659.
Hassan, N. A. M. (2007). Studies on the algal flora distributed at Wadi-Sannur of the Eastern- desert of Egypt. M. Sc. Thesis, Faculty of Science, Beni-Suef University, Egypt.
Hellebust, J. A. (1974). Extracellular products. In Steward, W.D.P. (Ed.) Algal Physiology and Biochemistry. Blackwell Scientific Publications, Oxford, UK, 838-863.
Hoshaw, R. W. and Rosowski, J. R. (1973). Methods of Microscopic Algae. In Stein, J. R., ed., Hand Book of Phycological Methods, Cambridge University press. London, New York, Sidney.
Hughes, E. O.; Gorham, P. R. and Zehnder, A. (1958). Toxicity of a unialgal culture of Microcystis aeruginosa. Can. J. Microbiol., 4:225-236.
Jaki, B.; Orjala, J., and Sticher, O. (1999). A noval extracellular diterpenoid with antibacterial activity from the cyanobacterium Nostoc commune. J. Nat. Prod., 62: 502-503.  
Jaki, B.; Orjala, J.; Heilmann, J.; Linden, A.; Vogler, B. and Sticher, O. (2000). Noval extracellular diterpenoids with biological activity from the cyanobacterium Nostoc commune. J. Nat. Prod., 63: 339-343.
Jaki, B; Zerba, O.; Heilmann, J. and Sticher, O. (2001). Two novel cyclic peptides with antifungal activity from the cyanobacterium Tolypothrix byssoidea (EAWAG 195). J. Nat. Prod., 64:154-158.
Jones, A. K. (1988). Algal extracellular products – antimicrobial substances. In Rogers, L. J. and Gallon, J. R. (Eds) Biochemistry of the Algae and Cyanobacteria. Clarendon Press, Oxford, UK. 257-281.
Mouget, J. L.; Dakhama, A.; Lavoie, M. C. and de la Noüe, J. (1995). Algal growth enhancement by bacteria: is consumption of photosynthetic oxygen involved. FEMS Microbiol. Ecol., 18: 35-44.
Mundt, S.; Kreitlow, S.; Nowotny, A. and Effmert, U. (2001). Biochemical and pharmacological investigations of selected cyanobacteria. Int. J. Hyg Environ. Health,203:327-334.
Pedersen, M, and Da Silva, E. J. (1973) Simple brominated phenols in the blue-green alga Calothrix brevissima West. Planta, 115: 83-96.
Pringsheim, E. G. (1949). Pure culture of algae, their preparation and maintenance. Cambridge Univ., UK.
Ramamurthy, V. D. (1970) Antibacterial activity of the marine blue-green alga Trichodesmium erythraeum in the gastro-intestinal tract of the sea gull Larus brumicephalus. Mar. Biol., 6:74-76.
 
 
Safonova, E. and Reisser, W. (2005). Growth promoting and inhibiting effects of extracellular substances of soil microalgae and cyanobacteria on Escherichia coli and Micrococcus luteus. Phycological Research, 53: 189-193.
Smith, G. M. (1950). The freshwater algae of the United States. Mc. Graw-Hill, New York,USA.
Staub, R. (1961). Ernährungsphysiologisch autäkologische Untersuchengen an der planktischen blaualg Oscillatoria rubescens D.C. Schweiz. Zeitschr. Hydrologie, 23: 82-198.
Volk, R. and Furkert, F. (2006). Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol. Research, 161:180-186.
Volk, R. B. (2005). Screening of microalgal culture media for the presence of algicidal compounds and isolation and iodentification of two bioactive metabolites, excreted by the cyanobacterium Nostoc insulare and Nodularia harveyana, respectively. J. Appl. Phycol., 17: 339-347.
Zar, J. H. (1984). Biostatistical analysis. 2nd ed. Prentice-Hall, Inc., Englewood Cliffs, NJ,USA.