Behairy, A. K. A. and M. M. El-Sayed , (1983). Biochemical composition of some marine brown algae from Jeddah coast, Saudi Arabia. Indian J. Mar. Sci. 12:200-201.
Bravo, L., (1998). Polyphenols: Chemistry, dietary source, metabolism, and nutritional significance. Nutr. Rev. 56:317-333.
Burtin, P., (2003). Nutritional value of seaweeds. Elect. J. Environ. Agric. Food Chem. 2(4):498-503.
Chan, C.C.J., P.C.K. Cheung and PO. Jr. Ang, (1997). Comparative studies on the effect of three drying methods on the nutritional composition of seaweed Sargassum hemiphyllum (Turn.) C. Ag. J. Agric. Food Chem. 45:3056-3059.
Dorman, H. J. D., M. Kosar, K. Kahlos, Y. Holm and R. Hiltunen , (2003). Antioxidant properties and composition of aqueous extracts from Mentha species, Hybrids, varieties, and cultivars. J. Agric. Food Chem. 51:4563-4569.
Fallarero, A., A. Peltoketo, J. Loikkanen, P. Tammela, A. Vidal and P. Vuorela, (2006). Effects of the aqueous extract of Bryothamnion triquetrum on chemical hypoxia and aglycemia-induced damage in GT 1-7 mouse hypothalamic immortalized cells. Phytomed.13:240-245.
Fellows, P., (1988). Food processing technology principal and practice. Ellis Horwood Ltd., London, pp. 304-313.
Fleurence, J., (1999). Seaweed proteins: Biochemical, nutritional aspects and potential uses. Trends Food Sci. Technol. 10:25-28.
Hou, X. and X. Yan, (1998). Study on the concentration and seasonal variation of inorganic elements in 35 species of marine algae. Sci. Total Environ. 222:141-156.
Ismail, A. and T. S. Hong, (2002). Antioxidant activity of selected commercial
seaweeds. Mal. J. Nutr. 8(2):167-177.
Jiménez-Escrig, A. and C. I. Goni, (1999). Nutritional evaluation and physio-
logical effects of edible seaweeds. Arch. Latinoam Nutr. 49:114-120.
Jiménez-Escrig, A. and F. Sanchez-Muniz, (2000). Dietary fiber from edible seaweeds: Chemical structure, physiochemical properties effects on cholesterol metabolism. Nutr. Res. 20(4):585-598.
Jiménez-Escrig, A., I. Jiménez-Jiménez, R. Pulido and F. Saura-Calixto,
(2001). Antioxidant activity of fresh and processed edible seaweeds. J. Sci.
Food Agric. 81:530-534.
Kähkönen, M. P., A. I. Hopia, H. J. Vuorela, J. P. Rauha, K. Pihlaja, T. S. Kujala and M. Heinonen, (1999). Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 47:3954-3962.
Kuda, T., M. Tsunekawa, H. Goto andY. Araki, (2005a). Antioxidant properties of four edible algae harvested in the Noto Peninsula, Japan. J. Food Compos. Anal. 18:625-633.
Lim, S. N., P. C. K. Cheung, V. E. C. Ooi and P. O. Ang, (2002). Evaluation of antioxidative activity of extracts from brown seaweed, Sargassum siliquastrum. J. Agric. Food Chem. 50:3862-3866.
Martin, J. H., (1979). Bioaccumulation of heavy metals by littoral and pelagic
marine organisms. ESA 600:377-380.
McDermid, K. J. and B. Stuercke, (2003). Nutritional composition of edible
Hawaiian seaweeds. J. App. Phycol. 15:513-524.
Moore S. and Stein H. W. (1958). Chromatography of amino acids on sulfonated
polysytyrene resins. Anal. Chem. 30:1185-1193.
Naylor, J., (1976). Production, Trends and Utilization of seaweeds and seaweeds products. In FAO fishers technical paper No. 159. Food and agricultural organization of United Nations, Rome, Italy, pp.1-71.
Portugal, T. R., E. O. Ladines, S. S. Ardena, L. Resurreccion, C. R. Medina
and P. M. Matibag, (1983). Nutritive value of some Philippine seaweeds.
Part II. Proximate, amino acid and vitamin composition. Philipp. J. Nutr.
166-172.
Qasim, R., (1991). Amino acids composition of some seaweed. Pakistan J.
Pharm. Sci. 4:49-54.
Satoru, K.; T. Naboru, N. Hiroo, S. Shinji and S. Hiroshi, (2003).
Oversulfation of fucoidan enhances its anti-angiogenic and anti-tumor
activities. Biochem. Pharm. 65:173-179.
Shanab, S. M. M., (2007). Antioxidant and antibiotic activities of some seaweeds
(Egyptian Isolates). Inter. J. Agric. Biol. 9(2):220-225.
Sun, T. and C. T. Ho, (2005). Antioxidant activities of buckwheat extract. Food
Chem. 90:743-749.
Velioglu, Y. S., G. Mazza, Gao L. and B. D. Oomah , (1998). Antioxidant
activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 46:4113-4117.
Wong, K. and P. C. Cheung , (2001a). Influence of drying treatment on three Sargassum species. 1. Proximate composition, amino acid profile and some physio-chemical properties. J. Appl. Phycol. 13:43-50.
Yen, G.C. and H. Y. Chen, (1995). Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 43:27-37.
Zahra, R.; M. Mehranian, F. Vahabzadeh and K. Sartavi , (2007). Antioxidant activity of brown algae Sargassum vulgar and Sargassum angustrifolium. J. Aquat. Food Prod. Technol. 16(2):17-26.
Zhang, W., X. J. Duan, H. L. Huang, Y. Zhang and B. G. Wang , (2006). Evaluation of 28 marine algae from the Qingdao coast for antioxidative capacity and determination of antioxidant efficiency and total phenolic content of fractions and subfractions derived from Symphycocladia latiuscula (Rhodomelaceae).
Zhao, X., C.H. Xue, Z. J. Li, Y.P. Cai, H.Y. Liu and H.T. Qi, (2004).
Antooxidant and hepatoprotective activities of low molecular weight
sulfated polysaccharide from Laminaria japonica J. App. Phycol. 16:111-
115.
Zubia, M., C.E. Payri, E. Deslandes and J. Guezannec, (2003). Chemical
composition of attached and drift specimens of Sargassum mangarevense
and Turbinaria ornate (Phaeophyta:Fucales) from Tahiti, French Polynesia
Bot. Mar. 46:562-571.