Antonyan A. A.; Meleshko G. I.; Pepelyaev Y. V.; Naidina V. P. and Sukhova N. I. (1986). Comparative characterization of fatty acid of lipids from various algae. Prikl. Biokim. Mikrobiol. 22:570-576.
Astley S. B.; Hughes D. A.; Wright A. J. A.; Elliott R. M. and Southon S. (2004). DNA damage and susceptibility to oxidative damage in lymphocytes: effect of carotenoids in vitro and in vivo.Br. J. Nutr. 91:53-61.
Aust O.; Stahl W.; Sies H.;Tronnier H. and Heinrich U. (2005). Supplementation with tomato-based products increases lycopene, phytofkuene, and phytoene levels in human serum and protects against UV-light-induced erythema. Int. J. Vitam. Nutr. Res. 75:54-60.
Barclay W. R.; Meager K. M. and Abril J. R. (1994). Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J. Appl. Phycol. 6:123-129.
Bates L. S.; Waldes R. P. and Teare I. D. (1973). Rapid determination of free proline for water stress studies. Plant Soil 39:205-207.
Bennett M. E. and Hobbie J. E. (1972). The uptake of glucose by Chlamydomonas sp. J. Phycol. 8: 389-392.
Blunt J. W.; Copp B. R.; Munro M. H. G.; Northcote P. T. and Prinsep M. R. (2005). Marine natural products. Nat. Prod. Rep. 22:15-61.
Borowitzka M. A. (1988). Vitamins and fine chemicals from microalgae, p. 153-196. In Borowitzka M. A. and Borowitzka L. J. (ed.), Micro-algal biotechnology, vol. 7. Cambridge Univ. Press, Cambridge.
Brown M. R. and Miller K. A. (1992).The ascorbic acid content of eleven species of microalgae used in marine culture. J. Appl. Phycol.4:205-215.
Cantrell A.; McGarvey D. J.; Truscott T. G.; Rancan F. and Böhm F. (2003). Singlet oxygen quenching by dietary carotenoids in a model membrane environment. Arch. Biochem. Biophys.412:47-54.
Cardozo K. H. M.; Guaratini T.; Barros M. P.; Falcão V. R.; Tonon A. P.; Lopes N. P.; Campos S.; Torres M. A.; Souza A. O.; Colepicolo P. and Pinto E. (2007). Metabolites from algae with economical impact. Comp. Biochem. Physiol. 146:60-78.
Chalvardjian A. M. (1964). Fatty acids of brown and yellow fat in rats. Biochem. J. 90:518-521.
Chen F. and John M. R. (1991). Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J. Appl. Phycol. 3:203-209.
Chen F.; Zhang Y. and Guo S. Y. (1996). Growth and phycocyanin formation of Spirulina plantensis in photoheterotrophic cultures. Biotechnol. Lett. 18:603-608.
Cho B.; Sauer N.; Komor E. and Tanner W. (1981). Glucose induces two amino acid transport systems in Chlorella. Proc. Natl. Acad. Sci. 78(6):3591-3594.
Cragg G. M.; Newman D. J. and Snader K. M. (1997). Natural products in drug discovery and development. J. Nat. Prod. 60:52-60.
De Mort C. L.; Lowry R.; Tinsley I. and Phinney H. K. (1972). The biochemical analysis of some estuarine phytoplankton species. I. Fatty acid composition. J. Phycol. 8:211-216.
Dere A.; Güneş T. and Sivaci R. (1998). Spectrophotometric determination of Chlorophyll-A, B and total carotenoid contents of some algae species using different solvents. Tr. J. Bot. 22:13-17.
Droop M. R. (1974). Heterotrophy of carbon, p. 530-559. In Stewart, W. D. P. (ed.), Algal physiology and biochemistry. Blackwell Scientific Press, Oxford.
Feng F.; Yang W.; Jiang G.; Xu T. and Kuang T. (2005). Enhancement of fatty acid production of Chlorella sp. (Chlorophyceae) by addition of glucose and sodium thiosulphate to culture medium. 40:1315-1318.
Funk C. D. (2001). Prostaglandins and leukotrienes: advances in eicosanoids biology.Sci. 294:1871-1875.
Hartree E. F. (1972). A modification of the lowery method that gives a linear photometric response. Analy. Biochem. 48:422-426.
Hashimoto S.; Setoyama Y.; Yokokura T. and Mutai M. (1982). Effects of Chlorella phospholipid on the aortic collagen and elastin metabolism and the serum lipid content in rats with experimental atheriosclerosis. Exp. Mol. Pathol. 37:150-155.
Homova T.; Gussakova S.; Glushenkova A. and Travkina I. (1986). Lipidis of Chlorella vulgaris extracts. Khim. Prir. Soedin. 3:284-288.
Ip P. F. and Chen F. (2005). Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem. 40:733-738.
Lichtenthaler H. K. and Wellburn A. R. (1985). Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biol. Soc. Trans. 11:591-592.
Mayne S. T. (1996). β-Carotenoid, carotenoids and disease prevention in humans. FASEB J. 10:690-701.
Misonou T. and Pachlavuni I. K. (1986).Photosynthetic pigments of Chlorella sp. K cultured under photoauto-, mixo- and chemohetero-trophic growth conditions. Jap. J. Phycol. 34:163-170.
Molina G. E.; Belarbi E. H.; Acién F. F.G.; Robles M. A. and Chisti Y. (2003). Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol. Adv. 20:491-515.
Moneam N. M. A. and Ghoneim T. (1986). Gas chromatographic analysis of total fatty acids extracted from Schinus terebenthifolius berries. J. Chromatograpgy 361:391-395.
Morimoto T.; Nagatsu A.; Murakami N.; Sakaibara J.; Tokuda H.; Nishino H. and Iwashima A. (1995). Anti-tumor promoting glyceroglycolipids from green alga, Chlorella vulgaris. Phytochem. 40:1433-1437.
Nichols B. (1965).Light-induced changes in the lipids of Chlorella vulgaris. Biochem. Biophys. Acta. 106:274-279.
Orosa M.; Torres E.; Fidalgo P. and Abalde J. (2000). Production and analysis of secondary carotenoids in green algae. J. Appl. Phycol. 12:553-556.
Petkov G. and Garcia G. (2007).Which are fatty acids of the green alga Chlorella? Biochem. Syst. Ecol. 35:281-285.
Piorreck M.; Baasch K. H. and Pohl P. (1984).Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochem. 23:207-216.
Polivka T. and Sundström V. (2004). Ultrafast dynamics of carotenoid excited states-from solution to natural and artificial systems. Chem. Rev. 104:2021-2071.
Rosa A.; Deidda D.; Serra A.; Dessi M. A. and Pompei R. (2005). Omega-3 fatty acid composition and biological activity of three microalgae species. J. Food Agric. Environ. 3:381-389.
Sánchez M. A.; Cerón G. M.C.; García C. F.; Molina G. E. and Chisti Y. (2002). Growth and biochemical characterization of micoalgal biomass produced in bubble column and airlift photobioreactors: studies in fed-batch culture. Enzy. Microb Technol.31:1015-1023.
Sansawa H. and Endo H. (2004). Production of intercellular phytochemicals in Chlorella under heterotrophic conditions. J. Biosci. Bioeng. 98(6):437-444.
Sayanova O. V. and Napier J. A. (2004). Eicosapentaenoic acid: biosynthesis routs and the potential for synthesis in transgenic plants. Phytochem. 65:147-158.
Shi X. M.; Jiang Y. and Chen F. (2002). High-yield production of leutin by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture, Biochem. Prog. 18:723-727.
Shibata S.; Oda K.; Onodera-Masuoka N.; Matsubara S.; Kikuchi-Hayakawa H.; Ishikawa F.; Iwabuchi A. and Sansawa H. (2003). Hypocholestrolemic effect of indigestible fraction of Chlorella vulgaris in cholesterol-fed rats. J. Nutr. Sci. Vitaminol. 47:373-377.
Shinichi T.; Shigehisa Y.; Kanazawa A. and Hachiro H. (1983). Effects of water temperature and salinity on eicosapentaenoic acid level of marine Chlorella. Bull. Jap. Soc. Sci. Fish. 49:805-809.
Shugarman P. M. and Appleman D. (1966). Chlorophyll synthesis in Chlorella. II. Effect of glucose and light intensity on the lag phase. Plant Physiol. 41:1701-1708.
Sies H. and Stahl W. (2004). Nutritional protection against skin damage from sunlight. Annu. Rev. Nutr. 24:173-200.
Singh S.; Kate B. N. and Banerjee U. C. (2005). Bioactive compounds from cyanobacteria and microalgae: an overview. Crit. Rev. Biotechnol. 25:73-95.
Vladimirova M. G. (1976). Changes in ultrastructure of the cell of Chlorella sp. K. during its functional reorientations. Fiziologia Rastenii 23:1180-1187.
Vladimirova M. G.; Klyachko-Gurvich G. L.; Maslova I. P.; Zholdakov I. A and Bartsevich E. D. (2000).A comprehensive study of Chlorella sp. IP-PAS C-48 and revision of its taxonomic position. Russ. J. Plant Physiol. 47:644-654.
Wacker A.; Becker P. and Elert E. V. (2002).Food quality effects of unsaturated fatty acids on larvae of the Zebra mussel Dreissena polymorpha. Limnol. Oceanogr. 47:1242-1248.
Wen Z. Y. (2001). A high yield and productivity strategy for eicosapentaenoic acid production by the diatom Nitzschia laevis in heterotrophic culture. Ph. D. Dissertation. Hong Kong: The University of Hong Kong. In: Wen Z. Y.; Chen F. 2003. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol. Adv. 21: 273-294.
White A. W. (1974). Growth of two facultative heterotrophic marine centric diatoms. J. Phycol. 10:292-300.
Wu Z. and Shi X. (2007). Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model. Lett. Appl. Microbiol. 44:13-18.
Yem E. W. and Cocking E. C. (1955). The determination of amino-acids with ninhydrin. Analy. 80:209-213.
Zhukova N. and Aizdaicher N. (1995). Fatty acid composition of 15 species of marine microalgae. Phytochem. 39:351-356.