SEASONAL PRODUCTIVITY AND CHEMICAL COMPOSITION OF MASS CULTURED ANABAENA WISCONSINENSE AND SPIRULINA PLATENSIS UNDER EGYPTIAN CONDITIONS

Document Type : Original Article

Authors

1 Faculty of Agriculture, Al Azhar University.

2 Central Laboratory for Aquaculture Research, Abbassa, Ecology and Biology Department, Agricultural Research Center, Ministry of Agriculture, Cairo, Egypt.

Abstract

The growth of two blue-green algae species Anabaena wisconsinense and Spirulina platensis under outdoor conditions (Egyptian conditions) was studied; variation in chemical composition of algal cells due to season of cultivation was also investigated. Average cell mass productivity reached the maximum in summer followed by autumn and spring in both  Anabaena  and  Spirulina  The decline in crude protein with ageing of culture was accompanied by an increase in fat and total carbohydrates contents and by the decrease of nucleic acid and mineral contents. Amino acid analysis showed that both species were deficient in methionine. Methods of drying significantly affected amino acid composition.  Growth and chemical composition of Spirulina cells are maximum crude protein content was around 63% for all seasons. This was attained at the age of 12 days for spring and summer and at 18 days in autumn seasons, the calculated average and maximum productivity of algal cells and crude protein showed the highest value in summer culture followed by autumn and spring seasons.  Summer temperature naturally ranged higher than the other two seasons and consequently, resulted in higher growth rate and protein productivity. However, analysis of variance comparing algal growth rate and yields of spring, summer and autumn cultures were not significant.

Keywords


Allen, E. J. and Nelson, E.W. (1974).On the artificial culture of marine plankton organisms. J. Mar. Biol. Assoc., 8:421-474.
Allen, M. D. B. and Garret, M. K. (1977). Bacterial changes occurring during the culture of algae in the liquid phase of animal slurry. J. Appl. Bacteriol., 42:27-43.
American Public Health Association (APHA) (1985).Standard methods for the examination of water and wastewater, edition American Public Health Association, Washington, D. C., USA.
Association of Official Analytical Chemists (A.O.A.C.) (1995).Official   Methods of Analysis   Association of Official Analytical Chemists. Edit., KHL Rich. Arlington Vargenia, USA.
Becker, E. W. (1987).Biotechnology and exploitation of the green alga Scenedesmus obliquus in India. Biomass, 4 (1):1-19.
Becker, E.W. (1994). Microalgae, Biotechnology and Microbiology.  Cambridge Univ. Press., pp. 9-39.
Behrenfeld, M. J. and Flakowski, P.G. (1997).Photosynthetic rates derived from satellite-based on chlorophyll concentration. Limnol. Oceanogr., 42:1-20.
Benemann, J. R. (1992).Microalgae aquaculture feeds and environmental. J. Appl. Phycol., 4: 233-245.
Bhumiratana, A. (1976). The production and utilization of Algae  as a Protein source in Thailand. Kasetsart University, Bangkok, 90 pp.
Boyd, C. E. (l973).Summer algal communities and primary productivity in fish ponds. Hydrobiol., 41: 357-390.
Cohen, Z. and A. Vonshak. (1991). Fatty   acid   composition   of  Spirulina  sp  like  cyanobacteria  in  relation their chemotaxonomy. Phytochemistry, 30:205-206.               
Dam, R.; Lee, S. K.; Fry, P.C. and Fox, H. M. (2002).Utilization of algae as a protein source for humans. J. Nutr., 86:376-382.
De Pauw, N.; Verboven, J. and Claus, C. (1984).Large-scale microalgae production for nursery rearing of marine bivalves. Aqua Cultural Engineering, 116/ 117:121-134.
DeLorenzo, M. E.; Leatherbury, M.; Weiner, J. A. and Fulton, M. H. (2004).Physiological factors contributing to the species-specific sensitivity of four estuarine microalgal Exposed to the Herbicide Atrszine. Aquat. Ecosyst. Health Manage, 7:137-146.
Dubois, M.; Gilles, K. A.; Hamilton, J. K. and Smith, F. (1956).Colorimeteric methods for determination of sugars and related  substances. Analyt. Chem., 18:350-356.
Duncan, D. B. (1996).Multiple range and multiple F test. Biometrics, 11:1-42.
Edmondson, W. T. (2006).Eutrophication in North America, eutrophication causes consequences. Washington, D.C., USA., 124-149.
El-Bastawy, E.; Belinger, E. G. and Sigee, D. C. (1996).Elemental composition of phytoplankton in a subtropical lake, Spirulina platensis (Cyanophyta) Eur. J. Phycol., 31:157-166.
El-Fouly, M. M.; Abdalla, F. E. and Saleh, A. M. (1979). Studies on out-door mass culture of green alga Chlorella vulgaris. Effect of nitrogen efficiency in growth medium. Al-Azhar Agric. Bull., 22:l-14.
El-Fouly, M. M.; Soeder, C. J.; Mohn, F. H. and Greoneweg, J. (1998).Open door mass production, chemical composition and biological evaluation of different algal species. Bull. Egypt, 2: 149-165.
Fan, L.; Vonshak, A. and Boussiba, S. (1994). Effect of temperature and irradiance on growth of Haematococcus pluvialis. J. Phycol., 30:829-833.
FAO (1983). Compilation of legal limits for hazardous substances in fish and fishery products. FAO Fishery Circular No. 464.
Fee, E.J. (1970). A relation between lake morphometry and primary productivity and its use in interbreeding whole. Lake eutrophication experiments. Limnol. Oceanger., 24: 401-416.
Felts, P.A. and Heath, A.G. (1984).Interactions of temperature and sublethal environmental copper exposure on the energy metabolism. J. Fish Biol., 25: 445-453.
Fingerhut, U. (1985). Wachstum und Zusammenwirken von Scenedesmus falctus und Pseudomonas aeroginosa bei chemostatischer Kultur in acetathaltigem Modellabwasser., Phytochemistry.,205-209.
Fogg, G.E. (1984). Algal cultures and phytoplankton ecology. University of Wisconsim Press, pp. 37-51.
Forstner, U. and Witman, G.T. (1983). A histological examination and analysis for polychlorinated hydrocarbons in shore atlantic cod (Gadus morhua). Arch. Environ. Contam. Toxicol., 12:627-632.
Lin, W.; Pan, B.; Xu, J. and Q. Hu. (2007).Antioxidant    activity   of   Spirulina   platensis extractsby supercritical  carbon dioxide extraction. Food chem., 105:36-41.
Lu, J., Yoshizaki, M. Sakai, K. and Takeuchi, T. (2002).  Acceptability  of raw  Spirulina    platensis   by larval tilapia . Fish. Sci., 68:51-58.
Morse, M. L. and Carter, C. F. (1969). The  synthesis  of   nucleic    acid   in  cultures of Escherchia coli Strains B and B\r. J. Bacteriol., 58:317-326.
Munoz, R.; Kollner, C.; Guieysse, B. and Mattiasson, B. (2004).Photosynthetically oxygenated salicylate biodegradation in a continuous stirred tank photobioreactor. Center for Chemistry and Chemical Engineering, Lund University, 6:797-803.
Nalewjako, C; Dunstall, T. G. and Shear, H. (1976).Kinetics of extra-cellular release in axenic algae and in mixed algal-bacterial cultures: Significant in the estimation of total phytoplankton excretion rates. Bull. Egypt, 4:134-139.
Nandeesha, M. C.; Gangadhara, B.; Varghese, T. J. and Keshavanath, P. (1998).Effect of feeding Spirulina  platensis on the growth, proximate composition and organoleptic quality of common carp. Aquaculture Res., 29:305-312.
Payer, H. D.; Chiemvichak, Y.; Hosakul, K. and Kongpanich, J. (2001).Temperature as an important climatic factor during mass production of microalgae.Algae Biomass. Elsevier/North-Holland Biomedical Press, New York.,USA., pp. 389-399.
Persoone, G.; Morales, J. and Claus, C. (1988). Mass culture of algae bottleneck in the nursery culturing of molluscs. Algae biomass. Elsevier/North-Holland Biomedical Press, New York., USA.
Saleh, A. M.; Abdalla, F.E. and El- Fouly, M. M. (1979). Studies on outdoor mass-culture of green alga . Seasonal variation of growth and crude Protein content. Al-Azhar Univ. Press. Cairo.
Spectorova, A.; Montesinos, J. L.; Cusido J. A. and Godia, F.  (1997). Recovery and treatment of Spirulina  platensis cells cultured in a  continuous photobioreactor to be used as food. Process Biochem., 37: 535-547.
Taha, E. M. and Allam, A. M. (1959). Physiological and biochemical studies on Egyptian fresh water algae. V. Growth and cell protein influenced by culture conditions. Arch. Microbiol., 34:393-400.
Tartiel, M. Badawy (2005). Physiological studies on some green algae. Ph.D. Thesis, Faculty of Agriculture, Cairo University. Egypt.                                                   
 Venkataraman, L.V.; Nigam, B.P. and Ramanathan, P. K. (1980).Rural oriented fresh water cultivation  and production of algae m India. In: G. Algae Biomass. Elsevier/North- Holland Biomedical Press, New York, USA., pp.81-95.
 Vollenweider, S. K. (1969).Method   for   determination  of  Chlorophyll in microplants and phosphoproteins in algae. J. Bid, Chem., 161:81
Vymazal, J. (1995). Algae and element cycling in wet lands .Duke Univ. North Calorina .CRC press.
Wang, Q.L.; Liu, Y.D.; Shen, Y.W. ; Jin, C.Y. and  Zhu, J.M. (2005). Studies on mixed mass cultivation of Anabaena spp. (nitrogen-fixing blue-green algae ) on a large scale.  Hydrobiol. Acad. Sinica, China. 3:221-228.
Wang, S.M.; Wang, Q.L.; Li, S.H. and Zhang, J. R. (2007).  A study of treatment of spring wheat with growth promoting substances from nitrogen-fixing blue-green algae. Academia Sinica, Wuhan, Hubei, China,1:45-52.
Wong, P.K. and Chan, K.Y. (1990). Growth and value of Chlorella salina grown on highly saline sewage effluent.  Department of Biology, Chinese University of Hong Kong, Environment, 4:234-250.
World Health Organization (WHO) (1984). Guide lines for drinking water quality. Geneva.
Woynarovich, E. (1968). New systems and new fishes for culture in Europe. FAO Fish. Rep., 44 (5): 162-181.
Wu, H.W. and Chung, L.  (1964). Progress and achievements in the artificial propagation of four farm fishes in China. Gen., 160: 203-218.
Yan, G.; Yu-Jing, Y.; Wang, X. and Wang, Y.X. (2000).  The effects of pH and temperature on orthophosphate removal by immobilized Chlorella vulgaris. Biotechnology Letters, 18(8):893-896.
Yang, J. X. and Huang, X.F. (2007).  Effects of environmental factors on the hatching rate of eggs (Rotatoria: Monogononta). Acta Hydrobiologica Sinica, 4: 331-339.
Zaghloul, K. H. (1997). Studies on the effect of water pollution along different sites of the River Nile on the survival and production of some freshwater fishes. Ph. D. Thesis. Zoology, Cairo Univ. Egypt.
Zaret H. D. (1998).The effect of phosphorus and nitrogen on phytoplankton dominace in fish ponds. Aquaculture Research, 28:591- 597.
Zaret T. M.; Devol, A. H. and Dos Santos, A. (1981). Nutrient addition experiment in Lago Jacaretinga, Central Amazon Basin, Brazil. Verh. Internat. Verein. Limnol., 21:721-724.
Zarrouk, C. (1966). Contribution a` l'étude d`une cyanophycee. Influence de divers facteurs physiques photosynthe Spirulina sp.Ph D Thesis, Université de Paris, France.