EFFECT OF SOME HEAVY METALS ON GROWTH OF SCENEDESMUS OBLIQUUS (TURPIN) KÜTZING

Document Type : Original Article

Authors

1 Botany & Microbiology Dept., Fac. of Sci., Al Azhar Univ. (Girl Branch).

2 Botany Depart. Fac. of Sci., Helwan Univ.

3 Collège de la Salle- Frères-Daher.

Abstract

The effect of concentrations of copper (0.5, 1.5 mg l-1), lead (10, 40, mg l-1) and zinc (0.05 and 0.5 mgl-1) singly or in combination on growth of Scenedesmus obliquus was studied. The results showed that there is a difference between the effects of each metal singly and in combinations with each others. Generally, heavy metals decreased the growth of Scenedesmus obliquus. High concentration of copper uptake exceeds its uptake in low concentration (58 and 42%, respectively). While the uptake of lead and zinc in low concentrations exceeds their uptake in high concentrations with percentages of (87%, 86%, 13% and 14%, respectively). Zinc uptake in combinations was dominant over the two other metals. The effect of heavy metals on ultrastructure of Scenedesmus obliquus by using the Transmission Electron Microscope was investigated.

Keywords


Ahmed, E. A. (2003). Taxonomical and Physiological Studies on Some Algal Species, Isolated from Hyper –Saline Habitats and Its Role in Ameliorating Soil Characteristics Polluted With Heavy Metals. M.Sc. Thesis, Faculty of Science, Al-Azhar University (Girl Branch), Cairo, Egypt, 225pp.
Allen, M. M., and Stanier, R. Y. (1968). Growth and division of some unicellular blue-green algae. J. Gen. Microbiol., 51:199–202.
Bariaud, A.; Bury, M. and Mestre, J. C. (1985). Mechanism of cadmium resistance in Euglena gracilis. Physiol. Plant, 63: 382-386.
Bourrelly, P (1968): Les algues d’eau douce 11 Les algues Jaunes et brunsn. Boubee and Cie, Paris, 438 pp.
Choie, D. D. and Richter, G. W. (1972). Lead poisoning: rapid formation of intranuclear inclusions. Science (Wash. D.C.), 177:1194 -1195.
Clark, R.B.; Frid, C. and Attril, M. (1997). Marine Pollution Clarendon Press. Oxford (Fourth edition). p 160.
Fitzgerald, G. P. and Faust, S. L. (1963). Factors affecting the algicidal and algistatic properties of copper. Appl. Micrabiol., 11:345-351.
Franklin, N.M.; Stauber, J.L.; Lim, R.P. and Petocz, P. (2002). Toxicity of metal mixtures to a tropical fresh water algae (Chlorella sp.): the effect of interactions between copper, cadmium, and zinc on metal cell binding and uptake. Environ. Toxicol Chem., 21: 2412-2422.
Goyer, R. A.  and Rhyne, B. C. (1973). Pathological effect of lead. Int. Rev. Exp. Pathol., 12:1-77.
Goyer, R. A.; May, P.; Cates, M. M. and Krigman, M. R. (1970). Lead and protein content of isolated intranuclear inclusion bodies from kidneys of lead-poisoned rats. Lab. Invest., 22:245 251.
Guillard, R. R. L. (1995). Culture methods. In: Hallegraeff, G. M., Anderson, D. M., and Cembella, A. D., eds. Manualon Harmful Marine Microalgae. IOC Manuals and Guides No. 33. UNESCO, Paris, pp. 45–62
Hollybaugh, J. T.; Seibert, D. L. R. and Thomas W. H. (1980). A comparative of the acute toxicities of ten heavy metals to phytoplankton from Saanich Inlet. B. C. Canada. Estuarine Coastal. Mar. Sc., 10:93-105.
Hsu, F. S.; Krook, L.; Shively, J. N.; Duncan, J. R. and Pond, W. (1973). Lead inclusion bodies in osteoclasts. Science (Wash. D. C.), 181:447-448.
Hughes, E. O., Gorham, P. R., and Zehnder, A. (1958). Toxicity of a unialgal culture of Microcystis aeruginosa. Can. J. Microbiol., 4:225–36.
Jeffrey, S.W. and Humphrey, G. F. (1975).  New Spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae, and natural phytoplankton.  Biochem. Physiol. Pflanz., 167: 191-194.
Jegerschöld, C.; Arellano, J.B.; Schroder, W.P.; Van Kan, P.J.M.; Baron, M. and Styring, S. (1995). Copper (II) inhibition of electron transfer through photosystem 11 studied by EPR spectroscopy. Biochemistry, 34: 12747-12754.
Kobbia, I. A; Dowidar, A. E.; Shabana, E. F., Al-Attar, S. A. (1993): Succession, Biomass levels of phytoplankton in the Nile water near the Starch and Glucose Factory at Giza, (Egypt). Egyptian Journal of Microbiology 28:131-143.
Krupa, Z.; Oquist, G. and Huner, N. (1993). The effects of cadmium on photosynthesis of Phaseolus Vulgaris – a fluorescence analysis. Physiologia Plantarum, 88:626-630.
Küpper, H.; Küpper, F. and Spiller, M. (1996). Environmental relevance of heavy metal – substituted chlorophyll using the example of water plants. J. of Exp. Botany, 47:259-266.
Lowry, O.H.; Resebrought, N.J.; Furr, A.L. and Randall, R.J. (1951): Protein measurement with folin phenol reagent. J. Biol. Chem., 193:265-275.
Magdaleno, A. Gomez, C.E.; Velez, C.G. Accorinti, J. (1997). Preliminary toxicity tests using the green alga, Ankistrodesmus falcatus. Environ. Toxicol. Water Qual., 12:11.
Mallick, N. and Rai, L. C. (1992). Metal induced inhibition of photosynthesis, photosynthetic electron transport chain and ATP content of Anabaena doliolum and Chlorella vulgaris interaction with exogenous ATP. Biomed. Environ. Sci., 5:241.
Maloney, T. E. and Palmer, C. M. (1956). Toxicity of 6 chemical compounds to 30 cultures of algae. Water Sewage Works, 103:509-513.
Moore, J. F. and Goyer, R. A. (1974). Lead induced inclusion bodies:  composition and probable role in lead metabolism. Environ. Health Perspect., 7:121 127.
Olsson, R. W.; Abel, K. Sin, K. and Sin, K. G. (1979). Prokaryotic metallothionein: Preliminary characterization of a blue-green metal finding protein. Biochem. Biophy. Res. Common., 89:36-43.
Osman, M. E. H.; El-Naggar, A.H.; El-Sheekh, M. M. and El-Mazally, E.E. (2004). Differential effects of Co 2+ and Ni2+ on protein metabolism in Scenedesmus obliquus and Nitzchia perminuta. Environ. Toxicol. Pharmacol., 16:169-178.
Padmini Sreenivasa Rao, P.; Sreenivasa Rao, P. and Karmarkar, S. M. (1986). Antibacterial substances from brown algae 1. Efficiency of solvents in the evaluation of antibacterial substances from Sargassum johnstonii Setchell et Gardner. Bot. Mar., 19:503-507.
Palade, G. E; Zagury, D; Uhr, J .W and Jamieson, J. D. (1952). Histoautoradiography study of immunoglobulin biosynthesis of mouse myeloma plasmacytes. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences. Série D: Sciences naturelles, 268:1664-1667.
Pratima, M.; Angadi, S. B. and Mathad, R.D. (2001). Growth responses of Microalgae to multiple metal ion stress. Intern. J. of Ecol. & Environ. Sci., 27:97-103.
 Rai, L. C.; Tyagi, B.; Rai, P. K. and Mallick, N. (1998). Interactive effect of UV-B and heavy metals (Cu and Pb) on nitrogen and phosphorus metabolism of N2-fixing cyanobacterium Anabaena doliolum. Environ. Exp. Bot., 39:221.
Shaaban- Dessouki, S. A.; Deyab, M. A. and Mofeed, J. (2004): Phycological assessment of water quality of River Nile Delta- Egypt. Egyptian J. of Phycol., 5:18-34.
Silverberg, B. A.; Stokes, P. M. and Ferstenberg, L. B. (1976). Intranuclear complex in copper-tolerant green alga.J. cell Biol., 69:210-214.
Skaar, H.; Ophus, E. and GullvÄg, B. M. (1973). Lead accumulation within nuclei of moss leaf cells. Nature (Lond.), 241:215-216.
Stokes, P. M.; Hutchinson, T. C. and Krauter, K. (1973). Heavy metal tolerance in algae isolated from contaminated lakes near Sudbury, Ontario. Canad. J. Bot., 51:2155-2168.
Ting, Y.P.; Lawson, F. and Prince, I.G. (1991): Uptake of cadmium and zinc by the alga Chlorella vulgaris. II- Multi ion Situation. Biotechnol. Bioengineer., 37:445-455.
Toulibah, H. E. (1996): Ecological studies on the Nile River phytoplankton in relation to phsico-chemical characters at the area between Esna and Delta Barrage. Ph. D. Thesis, Fac. of  Girls, Ain Shams Univ., Egypt, 203pp.
Umbriet, W.W.; Burris, R.H.; Stauffer, J.F.; Coheen, P.P.; Johsen, W.J.; lee Page G.A.; Patter, V.R. and Schneider, W.C. (1969): Manometric techniques, a manual describing methods applicable to the study of tissue metabolism. Burgess Publishing Co., USA, 239.