PHYSIOLOGICAL ACTIVITIES OF ULVA LACTUCA IN RESPONSE TO Cu AND Pb TREATMENTS.

Document Type : Original Article

Author

Botany Department, Faculty of Science at Damietta, Mansoura University, Damietta, Egypt.

Abstract

A comparative study of copper (Cu) and lead (Pb) treatments to Ulva lactuca introduced from Damietta harbor, was conducted by examining dry weight and pigmentation, total soluble sugars, protein, ascorbate and superoxide dismutase. The lower concentrations of Cu and Pb (0.01 and 0.1 mg l-1 respectively) increased contents of chlorophylls, carotenoids, and total soluble sugars, and also induced a strong activation of antioxidant activity in U. lactuca. However, concentration (0.1 mg l-1) of Pb exhibited a non significant change of dry weight and protein from untreated control. Whereas concentration (1 mg l-1) of both Cu and Pb induced both of enzymatic (Superoxide dismutase) and non enzymatic (Ascorbate) antioxidants, but inhibited dry weight and contents of carotenoids, protein and total soluble sugars in U. lactuca. In the other hand, chlorophylls (a and b) were induced in case Cu treatment but were inhibited in case Pb treatment at the same concentration (1mg l-1). Although, higher concentration (5 mg l-1) of both Cu and Pb seemed to be toxic and inhibited most metabolic activities, it induced enzymatic antioxidant (Superoxide dismutase). However, Cu seemed advantageous to growth and physiological responses of U. lactuca than Pb. Both heavy metals particularly at the lowest concentrations are beneficial to U. lactuca growth and for production of antioxidants.  

Keywords


Abd El-Baky, H. H.; El Baz, F. K. and El-Baroty, G. S. (2008). Evaluation of marine alga Ulva Lactuca L. as source of natural preservative ingredient. Electronic journal of Environmental, Agricultural and Food Chemistry, 7: 3353-3367.
Ahmed,  P.; Sharma,  S. and Srivastava, P. S. (2006). Differential physio-biochemical responses of high yielding varieties of Mulberry (Morus alba) under alkalinity (Na2 CO3) stress in vitro. Physiological  Molecular biology plants,12: 59-66.
Altamirano, M.; Flores-Moya, A. and Figueroa, F. L. (2000).  Long –term effects of natural sunlight under various ultraviolet radiation conditions on growth and photosynthesis of intertidal Ulva rigida (Chlorophyceae) cultivated in situ. Botanica Marina, 4:119 – 226.
Aravind, P. and Prasad, M. N. V.  (2005). Modulation of cadmium – induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate – glutathione cycle and glutathione metabolism. Plant Physiology and Biochemistry, 43:107 -116.
Athukorala, Y.; Nam, K. and Jeon, Y. (2006).  Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga Ecklonia cava. Food and Chemical Toxicology, 44: 1065-1074.
Babu, T. S.; Akhtar, T. A; Lampi, M. A.; Tripuranthakam,  S.; Dixon  D.G. and Greenberg,  B.M. (2003). Similar responses are elicited by copper and ultraviolet radiation in the aquatic plant Lemma gibba: implication of reactive oxygen species as common signals. Plant Cell Physiology, 44: 1320- 1329.
Beyer, W. F. and Fridovich, Y. (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry, 161: 559 – 566.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein – dye binding. Analytical Biochemistry, 72: 248-154.
 Brown, M.T. and Newman, J. E. (2003). Physiological responses of Gracilariopsis  longissima (S.G. Gmelin) Steentoft LM Irvince  and Farnham (Rhodophyceae) to sublethal copper concentrations. Aquatic Toxicology, 64: 201-213.
Collen, J.; Pinto, E.; Pedersen, M. and Colepicolo, P.  (2003). Induction of oxidative stress in the red macroalgae Gracillaria tenuistipitata by pollutant metals. Archives of Environmental Contamination and Toxicology, 45: 337-342.
Cooke, M. S.; Evans, M. D.; Mistr, Y. N. and Lunec, J. (2002).  Role of dietary antioxidants in the prevention of in vivo oxidative DNA damage. Nutrition Research Reviews, 15:19-41.
Correa, J. A.; Gonzaleaz,  P. and Sanchez P. (1996). Copper-algal interaction: inheritance or adaptation.  Environmental Monitoring and Assessment, 40: 41-54.
De Filippis, L. F. and Pallaghy, C. K. (1994). Heavy metals sources and biological effects. In: Algae and Water Pollution. (Ed by L.C. Rai et al.) E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, 31-37.
El-Baz, F. K.; Aboul-Enein, A. M.; El-Baroty, G. S.; Youssef,  A. M. and Abd El-Baky H. H. (2002). Anticarcinogenic activity of algal extracts. Journal of Medical Science, 2: 243-251.
Foyer, C. H.;  Theodoulou, F. L. and Delrot,  S. (2001). The function of inter-and intracellular glutathione transport systems in plants. Trends inPlantScience 4: 486 – 492.
Gadd, G. M. and Griffith, A. J.  (1978). Microorganisms and heavy metal toxicity. Microbial Ecology, 4: 303 -317.
Garcia, I. R. and Guil – Guerrero, J. L. (2008). Evaluation of the antioxidant activity of three microalgal species for use as dietary supplements and in the preservation of food. Food chemistry, 108: 1023 – 1026.
Gledhill, M.; Nimmo, M.; Hill, S. J. and, Brown, M. T. (1997). The  toxicity of copper (II) species to marine algae, with particular reference to macroalgae. Journal of Phycology, 33: 2-11.
Gravato, C.; Teles, M.; Oliveira, M. and Santos, M. A. (2006). Oxidative stress, liver bio-transformation and genotoxic effects induced by copper in Anguilla anguilla L- the influence of pre-exposure to β- naphthoflavone. Chemosphere,65 (10): 1821 -1830.
Hassan,  N. M. and Nemat Alla, M. M. (2005). Oxidative stress in herbicide – treated broad bean and maize plants. Acta physiologiae plantarum, 27: 429-438
Jimenez, A.; Hernandez, J. A.; Del Rio, L. A. and Sevilla, F. (1997).  Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiology, 114: 275-284.
John, R.; Ahmed, P.; Gadgil, K. and Sharma, S. (2008).  Effect of Cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant soil Environment, 54: 262-270.
Kurama, E. E.; Fenille, R. C.; Rosa Jr., V. E.; Rosa, D. D. and Ulian, E.C. (2002). Mining the enzymes involved in the detoxification of reactive oxygen species (ROS) in sugarcane, Molecular Plant Pathology, 3: 251-259.
Lazaridou, E.; Orfanidis, S.; Haritonidis, S. and Seferlis,  M. (1997). Impact of eutrophication on species composition and diversity of macrophytes in the Gulf of Thessaloniki, Macedonia Greece: first evaluation of the results of one year study. Fresenius EnvironmentalBulletin, 6: 54-59.
Maksymiec, W. and Baszynski, T. (1996). Different susceptibility of runner bean plants to excess copper as a function of the growth stages of primary leaves. JournalofPlant Physiology, 149: 217 - 221.
Metzener, H.; Rau, H. and Senger, H. (1965). Untersuchungen zur sunchronisier barkeit einzelner- Pigment – Mangel Mutanten Von Chlorella. Planta, 65: 186-199.
Mitchelmore, C. L; Verde, E. A.; Ringwood, A. H. and Weis, V. M. (2003). Differential accumulation of heavy metals in the sea anemone Anthopleura elegantissima as a function of symbiotic state. Aquatic Toxicology, 64: 317-/329.
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7: 405-410.
Morlon, H. C.; Fortin, C. and Adam, Garnier-Laplace J. (2005). Cellular quotas and induced toxicity of selenite in the unicellular green alga Chlamydomonas reinhardtii. Radioprotection, 40: 101-106.
Mukherjee,  S. P. and  Choudhuri,  M. A. (1983). Implication of water stress induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigoa seedlings. Plant physiology, 58: 166-170.
Murgia, I.; Tarantino D.; Vannini, C.; Bracale, M.; Carravieri, S. and Soave, C. (2004). Arabidopsis thaliana plants over expressing thylakoidal ascorbate peroxidase show increased resistance to paraquat – induced photooxidative  stress and to nitric oxide – induced cell death. Plant Journal, 38: 940- 953.
Nemat Alla, M. M. (1995). Glutathione regulation of glutathione s-transferase and peroxidase activity in herbicide-treated Zea mays. Plant PhysiologyandBiochemistry, 33: 185-192.
Nemat Alla, M. M. (2000). The influence of naphthalic anhydride and 1- aminobenzotriazole on maize resistance to herbicides: A possible role for glutathione S- transferase in herbicide persistence and detoxification. Agricultural Medicine, 130: 18-26.
Nemat Alla,  M. M. and Hassan,  N. M. (2006). Changes of antioxidants levels in two maize lines following atrazine treatments. Plant physiology and biochemistry, 44: 202-210.
Okamoto, O. K.; Asano, C. S.; Aidar, E. and Colepicolo, P.(1996).  Effects of cadmium on growth and superoxide dismutase activity of the marine microalga Tetraselmis gracilis. Journal of Phycology, 32: 74-79.
Orbea, A.; Ortiz-Zarragoitta, M.; Sole, M.; Porte, C. and Cajaraville, M. (2002). Antioxidant enzymes and peroxisome proliferation in relation to contaminant body burdens of PAHs and PCBs in bivalve molluscs, crabs and fish from the Urdaibai and Plentzia estuaries (Bay of Biscay). Aquatic Toxicology, 58: 75 -98.
Palma, J. M., Sandalio, L. M., Javier Corpas, F., Romero-Puertas M.C., McCarthy, I., Del Rio, L.A. (2002): Plant proteases protein degradation and oxidative stress: role of peroxisomes. Plant physiology Biochemistry, 40: 521-530.
Patra, M.; Bhowmik, N.; Bandopadhyay, B. and Sharma, A. (2004). Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmentaland Experimental Botany, 52: 199-223.
Pereira, P.; De Pablo, H.; Rosa-Santos, F.; Pacheco, M .and Vale, C. (2009). Metal accumulation and oxidative stress in Ulva sp. substantiated by response integration into a general stress index. Aquatic toxicology, 91: 336-345.

Reed, R. H. and Moffat, L. (1983). Copper toxicity and copper tolerance in Enteromorpha compressa (L.) Grev. Journal of Experimental Marine Biology and Ecology, 69: 85-103.

Ruberto, G.; Baratta, M. T.; Biondi, D. M. and Amico, V. (2001). Antioxidant activity of extracts of the marine algal genus Cystoseira in a micellar model system. Journal of Applied  Phycology, 13:403-407.
Salt, D. E.; Blaylock, M. and  Kumar, N. P. B. A. (1995). Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13: 468 -474.
Snedecor, W. and Cochran, G. (1980). Statistical Methods, 7th ed, The Iowa State University Press, Ames, IA.
Stauber, J. L. and Florence, T. M. (1987). Mechanism of toxicity of ionic copper and copper complexes to algae. Marine Biology, 94: 511-519.
Stiborova, M.; Ksnska, S. and Brezinova, A. (1987). Effect of NaCl on the growth and biochemical characteristics of photosynthesis of barley and maize. Photosynthetica, 21: 320-328.
Tang,   D.; Shi,  S.; Li,  D.; Hu,  C. and Liu,Y. (2007).  Physiological and biochemical responses of Scytonema javanicum (cyanobacterium) to salt stress. Journal of Arid Environments, 71:312-320.
Van Assche,  F. and Clijsters, H. (1990). Effects of metals on enzymes activity in plants. Plant Cell Environment, 13:195-206.
Van Ho; A. D.; Ward, M. and Kaplan, J. (2002). Transition metal transport in yeast. AnnualReview of Microbiology, 56: 237-261.
Villares, R.; Puente, X. and Carballeria, A. (2002). Seasonal variation and back-ground levels of heavy metals in two green seaweeds. Environmental Pollution, 119: 79-90.
Wang, J. and Chen, C.  (2006). Biosorption of heavy metals by Saccharomyces cerevisiae. Advanced Biotechnology, 24: 427-451.
Yemm, E. W. and Willis, A. J. (1954). The estimation of carbohydrates in plant extract by anthrone. Biochemical Journal, 57: 508-514.
Zalups,  R. K. and Ahmad,  S. (2003). Molecular handling of cadmium in transporting epithelia. Toxicology andApplied Pharmacology,186: 163-188.
Zhang, X.; Ervin, E. H. and Schmidt, R. E.  (2005). The role of leaf pigment and antioxidant levels in Uv- B resistance of dark – and light- green Kentucky bluegrass cultivars. Hortscience,130: 836-841.