APPLICATION OF DRIED GREEN ALGAE TO REMOVE HEAVY METAL IONS FROM INDUSTRIAL WASTEWATER

Document Type : Original Article

Author

Botany Department, Faculty of Science, Fayoum University Fayoum, Egypt.

Abstract

Biosorption could be an effective process for the removal of toxic heavy metal ions from wastewater. In this study, the powder of three different species of marine green algae namely; Caulerparacemosa,  Enteromorpha intestinalis and Ulva lactuca were used to build up three types of fixed-bed columns for removal of heavy metal ions Cd2+, Pb2+, Cu2+, Co 2+, Zn2+, Mn2+, Ni2+, Fe2+ and Cr3+ from three chemical industrial effluents. The C.racemosa column was relatively more efficient to remove metal ions from the different effluent samples followed by U. lactuca and E. intestinalis with mean metal ion bioremoval efficiencies of 83%, 80% and 76% respectively. Toxicity assessment test using Pseudokirchneriella subcapitata showed that, the biological treated effluents with algal columns reduced its toxicity as EC50 values were very high significantly increased from 6% to 98%. This study verifies the possibility of using dried marine green algae as valuable material for the removal of toxic heavy metals from industrialwastewater.

Keywords


Abu Al-Rub, F.A.; El-Naas, M.H.; Benyahia, F. and Ashour, I. (2004). Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Proc. Biochem.,39: 1767–1773.
APHA (1989). Standard methods for the examination of water and wastewater, 17th ed. American Public Health Association, New York, 626 pp.
Apiratikul, R. and Pavasant, P. (2006). Sorption isotherm model for binary component sorption of copper, cadmium, and lead ions using dried green macroalga, Caulerpa lentillifera. Chem. Eng. J., 119:135–145.
Apiratikul, R. and Pavasant, P. (2008). Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Biores. Technol., 99: 2766–2777.
Aruoja, V.; Dubourguiera, H.; Kasemetsa, K. and Kahru, A. (2009). Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci. Tot. Environ., 407:1461-1468.
Azab, Y.A.; Ibrahim, W. M. and Hussien, M. (2008). Development of algal biofilters for the treatment of heavy metal pollution from industrial wastewater. Catrina, 3 (2):49-67.
El-Sikaily, A.; El Nemr, A.; Khaled, A. and Abdelwehab O. (2007). Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon.     J. Hazard. Mater, 148, 216–228.
Koukal, B.; Gueguen, C.; Pardos, M. and Dominik J. (2003). Influence of humic substances on the toxic effects of cadmium and zinc to the green alga Pseudokirchneriella subcapitata. Chemosphere, 53:953–961.
Kumar, Y.P.; King, P. and Prasad V.S.R.K. (2006). Comparison for adsorption modeling of copper and zinc from aqueous solution by Ulva fasciata. J. Hazard. Mater, 137:1246–1251.
Lavoie, M.; Le Faucheur, S.; Fortin, C. and Peter, G.C. (2009). Cadmium detoxification strategies in two phytoplankton species: Metal binding by newly synthesized thiolated peptides and metal sequestration in granules. Aquat. Toxicol., 92:65–75.
Lesmana, S.O.; Febriana, N.; Soetaredjo, F. E.; Sunarso, J. and Ismadji, S. (2009). Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem. Eng. J., 44:19–41.
Liu, Y.; Cao, Q.; Luo, F. and Chen, J. (2009). Biosorption of Cd2+, Cu2+, Ni2+ and Zn2+ ions from aqueous solutions by pretreated biomass of brown algae. J. Hazard. Mater, 163:931–938.
Lodeiro, P.; Herrero, R. and Sastre de Vicente, M.E. (2006). The use of protonated Sargassum muticum as biosorbent for cadmium removal in a fixed-bed column. J. Hazard. Mater, 137:244–253.
Organization for Economic Co-operation and Development (OECD) (2006). OECD Guideline for Testing of Chemicals Test Guideline 201 Freshwater Alga and Cyanobacteria, Growth Inhibition Test.
Ozdemir, S.; Kilinc, E.; Poli, A.; Nicolaus, B. and Guven, K. (2009). Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub.sp. decanicus and Geobacillus thermoleovorans sub. sp. stromboliensis: Equilibrium, kinetic and thermodynamic studies. Chem. Eng. J., 152:195–206.
Ozer, A.; Gurbuz, G.; Calimli, A. and Korbahti, B.K. (2008). Investigation of nickel(II) biosorption on Enteromorpha prolifera: Optimization using response surface analysis. J. Hazard. Mater, 152: 778–788.
Ozer, A.; Gürbüz, G.; Calimli, A. and Kِrbahti, B.K. (2009). Biosorption of copper(II) ions on Enteromorpha prolifera: Application of response surface methodology (RSM). Chem. Eng. J., 146:377–387.
Pagnanelli, F. ; Trifonia, M.; Beolchini, F. ; Espositoc, A. ; Toroa, L. and Veglio, F. (2001). Equilibrium biosorption studies in single and multi-metal systems. Proc. Biochem., 37:115–124.
Pavasant, P.; Apiratikul, R.; Sungkhum, V.; Suthiparinyanont, P.; Wattanachira, S. and Marhaba, T. F. (2006). Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera. Biores. Technol., 97:2321–2329.
Sari, A. and Tuzen M. (2008). Biosorption of Pb(II) and Cd(II) from aqueous solution using green alga (Ulva lactuca) biomass. J. Hazard. Mater, 152:302–308.
SPSS (1999). SPSS Base of 10 User’s Guide. SPSS, Inc. Stanley, L.C., Ogden, K.L., 2003. Biosorption of copper (II) from chemical mechanical planarization wastewaters. J. Environ. Manage, 69:289–297.
Turner, A.; Lewis, M.S.; Brown, M.T. and Shams, L. (2007). Uptake of platinum group elements by the marine macroalga, Ulva lactuca. Marine Chem., 105: 275–280.
Vieira, R.H.S.F. and Volesky, B. (2000). Biosorption: a solution to pollution. Int. Microbiol., 3:17–24.
Wang, J. and Chen, C. (2009). Biosorbents for heavy metals removal and their future.  Biotechnol. Advan., 27:195–226.
Zafar, S.; Aqil, F. and Ahmad, I. (2007). Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Biores. Technol., 98:2557–2561.