ENRICHMENT OF HETEROCYST FREQUENCY IN A NEW ISOLATE OF NOSTOC SP SAG 2306 BY 2,4 DICHLOROPHENOXYACETIC ACID AND ITS SUBSEQUENT IMPACT ON MODULATING PHOTOSYNTHESIS/RESPIRATION RATIO AND HYDROGENASES ACTIVITIES

Document Type : Original Article

Authors

Botany Department, Faculty of Science, Assiut University, Assiut , Egypt.

Abstract

Heterocysts are microaerobic specialized nitrogen fixing cells formed in some filamentous cyanobacteria and having the structural and physiological capacity to create and install internal anaerobic environment. The findings presented herein suggest that the auxin herbicide 2,4-D (2,4-dichlorophenoxyacetic acid) might be used for decreasing the culture and/or cellular oxic environment in Nostoc sp SAG 2306 that is favorable for enhancing the hydrogenases activities. This is achieved via induction and enrichment of heterocyst frequency. Treatment of the filamentous heterocyst-forming cyanobacterium Nostoc sp. SAG 2306 grown in nitrogen-deprived medium with different concentrations of 2,4-D has increased heterocyst frequency up to 19%.  Furthermore, 2,4-D induced heterocyst formation in the presence of combined nitrogen (nitrate) up to 90 µM. An increase in respiratory oxygen uptake and lowered photosynthesis/respiration (P/R) ratio, observed in 2,4-D treated Nostoc cultures, was associated with an increase in hydrogenases activities. 2,4-D caused a decrease in phycocyanin/chlorphyll a ratio which was associated with a decrease in photosynthetic oxygen evolution suggesting that the decrease in phycocyanins which are a major component of phycobilisomes, the light-harvesting complex of photosystem II in cyanobacteria, due to 2,4-D treatment has a negative impact in oxygen evolution and a positive impact on hydrogenases activities.
Lowered values of phycocyanin/chlorphyll a ratio, decreased oxygen evolution, photosynthesis/respiration (P/R) ratio with enhanced respiration and heterocyst formation all have been induced by 2,4-D cooperated to install anaerobiosis for hydrogen metabolism.

Keywords


Abdel-Basset, R. and Bader, K. P. (1997). Characterization of hydrogen photoevolution in Oscillatoria chalybea detected by means of mass spectrometry. Z. Naturforsch.,52c:775-781.
Abdel-Basset, R. and Bader, K. P. (1998). Physiological analyses of hydrogen gas exchange in cyanobacteria. J. Photochem. Photobiol. B: Biology, 43:146-151.
Abdel-Basset, R. and Bader, K. P. (1999). Effects of stress conditions and calcium on the light-induced hydrogen gas exchange in Oscillatoria chalybea. J. Plant Physiol.,155: 86-92.
Abdel-Basset, R. and Bader, K. P. (2008). Hydrogen evolution in relation to PSI-reducible substrates in the cyanobacterium Oscillatoria chalybea assayed by means of mass spectrometry. Int. J. hydrogen ener., 33:2653-2659.
Abdel-Basset, R.; Spiegel, S. and Bader, K. P. (1998). Saturation of cyanobacterial photoevolution of molecular hydrogen by photosynthetic redox components. J. Photochem. Photobiol. B: Biology 47:31-38.
Adams, D. G. (2000) Heterocyst formation in cyanobacteria. Curr. Opin. Microbiol.,3:618–624.
Appel, J. and Schulz, R. (1998). Hydrogen metabolism in organisms with oxygenic photosynthesis: hydrogenases as important regulatory devices for a proper redox poising? J. Photochem. Photobiol. B: Biology B, 47:1–11.
Appel, J., phynpruch, S., Steinmuller, K. and Schulz, R. (2000). The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis. Arch. Microbiol., 173:333-338.
Bald, D.; Kruip, J. and Rögner, M. (1996). Supramolecular architecture of cyanobacterial thylakoid membranes: how is the phycobilisome connected with the photosystems?  Photosynth. Res., 49:103–118.
Bergman, B.; Gallon, J. R.; Rai, A. N. and Stal, L. J. (1997). N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol. Rev., 19:139–185.
Böhme, H. (1998). Regulation of nitrogen fixation in heterocyst-forming cyanobacteria. Trends Plant Sci., 3:346–351.
Boison, G.; Bothe, H.; Hansel, A. and Lindblad, P. (1999). Evidence against a common use of the diaphorase subunits by the bidirectional hydrogenase and by the respiratory complex I in cyanobacteria.FEMS Microbiol. Lett., 174:159-165.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72:248-254.
Cardonaa, T.; Battchikova, N.; Agervalda, A.; Zhang, P.; Nagel, E.; Aro, E. M.; Styring, S.; Lindblad, P. and Magnusona, A. (2007). Isolation and characterization of thylakoid membranes from the filamentous cyanobacterium Nostoc punctiforme. Physiol. Plant., 131: 622–634.
Carrasco, C. D.; Buettner, J. A. and Golden, J. W. (1995). Programed DNA rearrangment of a cyanobacterial hupL gene in heterocysts. Proc. Natl. Acad. Sci. USA, 92:791–795.
Codd, G. A., Okabe,K. and Stewart,W. D. P. (1980). Cellular compartmentation of photosynthetic and photorespiratory enzymes in the heterocystous cyanobacterium Anabaena cylindrica. Arch. Microbiol., 124:149- 154.
Colbeau, A., Kelly, B.C. and Vignais, P. M. (1980). Hydrogenase activity in Rhodopseudomonas capsulata: relationship with nitrogenase activity. J. Bacteriol., 144:141-148.
Curatti, L., Flores, E. and Salerno, G. (2002). Sucrose is involved in the diazotrophic metabolism of the heterocyst- forming cyanobacterium Anabaena sp. FEBS Lett.,513:175-178.
Datta, M., Nikki, G.  Shah, V. (2000). Cyanobacterial hydrogen production. World J. Microbiol. Biotechnol.,16: 8-9.
Donze, M., Haveman. J. and Schiereck, P. (1971). Absence of photosystem II in heterocysts of the blue-green alga Anabaena. Biochim. Biophys. Acta., 256:157-161.
Dutta, D., De, D., Chaudhuri, S. and Bhattacharya, S. K. (2005). Hydrogen production by cyanobacteria. Microb. Cell Factor.,4:36-47.
Ernst, A., Kerfin, W., Spiller, H. and Boger, P. (1979). External factors influencing light-induced H2 evolution by the blue-green algae, Nostoc muscorum. Z. Naturforsch., 34:820-825.
Fay, P. (1992). Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol. Rev., 56:340-373.
Flores, E. and Herrero, A. (1994). Molecular evolution and taxonomy of the cyanobacteria, p. 487–517. In D. A. Bryant (ed.), The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands.
Golden, J. W. and Yoon, H. S. (2003). Heterocyst development in Anabaena. Curr. Opin. Microbiol.,6:557–563.
Hansel, A. and Lindblad P. (1998). Towards optimization of cyanobacteria as biotechnologically relevant producers of molecular hydrogen, a clean and renewable energy source. Appl. Microbiol. Biotechnol., 50:153–160.
Herrero, A., Muro-Pastor, A. M. and Flores, E. (2001). Nitrogen control in cyanobacteria. J. Bacteriol., 183:411–425.
Himadri, B. P. and Louis, A. S. (1984). A highly active oxygen-evolving photosystem II preparation from the cyanobacterium Anacystis nidulans. Plant Physiol.,74:742-745.
Holden, M. (1976). Chlorophylls. In: Chemistry and biochemistry of plant pigments 2nd Ed. Vol. 2. pp. 1–37, Goodwin, T.W., ed. London: Academic Press.
Houchins, J. P. (1984). The physiology and biochemistry of hydrogen metabolism in cyanobacteria. Biochim. Biophys. Acta,768:227–255.
Houchins, J. P. and Burris, R. H. (1981). Occurrence and localization of two distinct hydrogenases in the heterocystous cyanobacterium Anabaena sp strain 7120. J. Bacteriol., 146:209–214.
Howarth, D. C. and Codd, G. A. (1985). The uptake and production of molecular hydrogen by unicellular cyanobacteria. J. Gen. Microbiol., 131:1561–1569.
Katoh, T. and Gantt, E. (1979). Photosynthetic vesicles with bound phycobilisomes from Anabaena variabilis. Biochim Biophys Acta (BBA) – Bioenergetics, 546:383-393.
Kulasooriya, S. A. and Fay, P. (1974). On the reversibility of heterocyst differentiation. Europ. J. Phycol., 9:97-100.
Kura-Hotta, M., Satoh, K. and Katoh, S. (1986). Functional linkage between phycobilisome and reaction center in two phycobilisome oxygen-evolving photosystem II preparations isolated from the thermophilic cyanobacterium Synechococcus sp. Archiv. Biochem. Biophys.,249:1-7.
Lambert, G. R. and Smith, G. D. (1981). The hydrogen metabolism of cyanobacteria (blue-green algae). Biol. Rev., 56:589–660.
Lindblad P. (1999). Cyanobacterial H2-metabolism: knowledge and potential/ strategies for a photobiotechnological production of H2. Biotecnol. Apl., 16:141–144.
Meeks, J. C. and Elhai, J. (2002). Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol. Mol. Biol. Rev.,66:94–121.
Moezelaar, R. and Stal, L. J. (1994). Fermentation in the unicellular cyanobacterium Microcystis PCC7806. Arch. Microbiol.,162:63-69.
Nicolaisen, K., Hahn, A. and Schleiff, E. (2009). The cell wall in heterocyst formation by Anabaena sp. PCC 7120. J. Basic Microbiol., 49:5–24.
Ning, D. and Xu, X. (2004). alr0117, a two-component histidine kinase gene, is involved in heterocyst development in Anabaena sp. PCC 7120. Microbiology,150:447–453.
Ow, S. Y., Cardona, T.; Taton, A.; Magnuson, A.; Lindblad, P.; Stensjö, K. and Wright, P. C. (2008). Quantitative shotgun proteomics of enriched heterocysts from Nostoc sp. PCC 7120 using 8-plex isobaric peptide tags. J. Proteome Res., 7:1615–1628.
Papen, H., Kentemich, T.; Schmülling, T. and Bothe, H. (1986). Hydrogenase activities in cyanobacteria. Biochimie, 68:121–132.
Potts, M., Angeloni, S. V.; Ebel, R. E. and Bassam, D. (1992). Myoglobin in a cyanobacterium. Science, 256:1690–1692.
Rippka, R. and Herdman, M. (1992). Pasteur culture collection of cyanobacteria strains in axenic culture. Vol. 1, Catalogue of strains. 103 P., Institut Pasteur, Paris, France.
Serebryakova, L. T., Sheremetieva, M. E. and Lindblad, P. (2000). H2-uptake and evolution in the unicellular cyanobacterium Chroococcidiopsis thermalis CALU 758. Plant Physiol. Biochem.,38:525-530.
Stal, L. J. and Moezelaar, R. (1997). Fermentation in cyanobacteria. FEMS Microbiol. Rev., 182:1624-1631.
Tamagnini, P.; Axelsson, R.; Lindberg, P.; Oxelfelt, F.; Wünschiers, R. and Lindblad, P. (2002). Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol. Mol. Biol. Rev., 66:1–20.
Tamagnini, P.; Costa, J. L.;  Almeida, L.; Oliveira, M.J.;  Salema, R. and Lindblad, P. (2000). Diversity of cyanobacterial hydrogenases, a molecular approach. Curr. Microbiol., 40:356–361.
Tchernov, A. A.; Minkova, K. M.; Houbavenska, N. B. and Kovacheva, N. G. (1999). Purification of phycobiliproteins from Nostoc sp. by aminohexyl-sepharose chromatography. J. Biotechnol., 69:69–73.
Tiwari, D. N.; Pandey, A. K. and Mishra, A. K. (1981). Action of 2,4-dichloroacetic acid and rifampicin on heterocyst differentiation in the blue-green alga, Nostoc linckia. J. Biosci., 3:33-39.
Troshina, O. Y.; Serebryakova, L. T. and Lindblad, P. (1996). Induction of H2-uptake and nitrogenase activities in the cyanobacterium Anabaena variabilis ATCC 29413: Effects of hydrogen and organic substrate. Current Microbiol., 33:11-15.
Tsygankov, A. A. (2007). Nitrogen-fixing cyanobacteria: A Review. Applied Biochem. Microbiol., 43:250–259.
Wolk, C. P. (1996). Heterocyst formation. Annual Rev. Genet.,30:59-78.
Wolk, C. P. (2000). Heterocyst formation in Anabaena. In Prokaryotic Development. Edited by Shimkets LJ. Washington DC: American Society for Microbiology; p.83-104.
Wolk, C. P., Ernst, A. and Elhai, J. (1994). Heterocyst metabolism and development. In The Molecular Biology of Cyanobacteria. Edited by Bryant DA. Dordrecht: Kluwer Academic Publishers p.769-823.
Yoon, H. S. and Golden, J. W. (1998). Heterocyst pattern formation controlled by a diffusible peptide. Science,282:935-938.
Yoon, H.S. and Golden, J. W. (2001). PatS and products of nitrogen fixation control heterocyst pattern. J. Bacteriol.,183:2605-2613.
Yoshino, F., Ikeda, H., Masukawa, H. and Sakurai, H. (2007). High photobiological hydrogen production activity of a nostoc sp. Pcc 7422 uptake hydrogenase-deficient mutant with high nitrogenase activity. Marine Biotechnol., 9:101–112.
Yu, L. and Wolin, M. J. (1969). Hydrogenase measurement with photochemically reduced methyl viologen. J. Bacteriol., 98:51-55.
Zhang, C., Sophie, L., Samer, S.; Ling, P. and Sylvie, B. (2006). Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals. Molecular Microbiol., 59:367–375.