EFFECT OF NITROGEN ON THE BIOCHEMICAL CONSTITUENTS AND ANTIOXIDANT PRODUCTION BY TWO GREEN UNICELLULAR ALGAE

Document Type : Original Article

Authors

1 Department of Botany, Faculty of Science, Cairo university, Giza.

2 Microbial Biotechnology Department, National Research Center, Dokki, Giza, Egypt.

Abstract

In this study, two green microalgae, Dunaliella bardawil and Chlorella ellipsoidea, were cultured in different concentrations of nitrogen as sodium nitrate. These concentrations were 0.0 (nitrogen-free), 2.5, 5.0, 10.0, 25.0 and 50.0 mM N in case of D. bardawil and 0.0, 0.25, 0.50, 1.00, 2.5, 5.0 and 10.0 mM N in case of C. ellipsoidea. The results revealed that dry weight, protein, carbohydrates, chlorophyll a and chlorophyll b of D. bardawil were highly reduced in N-deficient cultures, whereas carotenoids were unaffected. Glycerol production by Dunaliella decreased to about 25 % of control in the absence of nitrogen. Similarly, dry weight, protein and carbohydrate contents of C. ellipsoidea were greatly reduced in N-deficient culture, whereas chlorophyll a and chlorophyll b of the same alga seemed to be slightly affected by the absence of nitrogen. Supplementation of nitrogen caused an obvious increase in dry biomass gain and biochemical components of the two algae. D. bardawil grown in N-deficient culture produced massive amounts of β-carotene reached to about 227.2 % of control. On the other hand, the accumulation of β-carotene in Chlorella cells was unaffected by the absence of nitrate. The content of β-carotene significantly decreased in both microalgae at the higher doses of nitrate. The contents of vitamin E and vitamin C were greatly reduced in both microalgae grown in N-deficient cultures. Supplementation of nitrate caused an obvious increase in the contents of both vitamins in Dunaliella. Contrarily, In case of Chlorella, while vitamin E was not detected, the content of vitamin C was greatly reduced in all doses of nitrate.

Keywords


Abd El-Baky, H. H.; El-Baz, F. K. and El Baroty, G. S. (2003). Spirulina species as a source of Carotenoids and α-tocopherol and its anticarcinoma factors. Biotech., 2: 222-240.
Abe, K.; Hattori, H. and Hirano, M. (2007).Accumulation and antioxidant activity of secondary carotenoids in the aerial microalga Coelastrella striolata var. multistriata. Food Chem., 100: 656-661.
Arad, S.; Cohen, E. and Ben-Amotz, A. (1993). Accumulation of canthaxanthin in Chlorella emersonil. Physiol. Plant., 87: 232-236
Bayanova, Y. I.; Trubachev, I. N. (1981). Comparative evaluation of the vitamin composition of some unicellular algae and higher plants grown under artificial conditions. Appl. Biochem. Microbiol., 17: 292-298.
Becker, E. W. (1980). Comparative toxicological studies with algae in India. Thailandia and Peru. In Algae Biomass: Production and Use. Elsevier/North Holland Biomedical Press, Amsterdam, pp. 767-786.
Ben-Amotz, A. (1987). Effect of irradiance and nutrient deficiency on the chemical composition of Dunaliella bardawil. (Volvocales, Chlorophyta). J. Plant Physiol., 131: 479-487.
Ben-Amotz, A. and Avron, M. (1983). On the factors which determine massive β-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiol., 72: 593-597.
Borowitzka M. A. and Borowitzka L. J. (1988). Micro-aglal Biotechnology. Cambridge University Press, Cambridge, 466 pp.
Brown, M. R.; Mular, M.; Miller, I.; Farmer, C. and Trenerry, C. (1999). The vitamin content of microalgae used in aquaculture. J. Appl. Phycol., 11: 247-255.
Burton, G. W; Joyce, A. and Ingold, K. U. (1982). First proof that vitamin E is major lipid soluble, chain-breaking antioxidant in human blood plasma. Lancet, 2: 327.
Burton, G. W. and Traber, M. G. (1990). Vitamin E: antioxidant activity, biokinetics and bioavailability. Annu. Rev. Nutr., 10: 357-382.
Chen, F.; and John, M. R. (1991). Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J. Appl. Phycol., 3: 203-209.
Chitlaru, E. and Pick, U. (1989). Selection and characterization of Dunaliella salina mutants defective in haloadaptation. Plant Physiol., 91: 788-794.
Christensen, R. (1996). Analysis of variance, Design and Regression. 1st edition. Chapman and Hall, pp. 587.
Davey, M. W.; Van Montagu, M. and Inzé, D. (2002). Ascorbate metabolism and stress. In Inzé, D. and Montagu, M.V. (eds.), Oxidative stress in plants. Taylor and Francis. London, New York, pp. 271-296.
Dubois, M.; Gilles, K. A.; Hamilton, J. k. and Smith, F. (1956). Phenol-sulphuric acid colorimetric method for carbohydrate determination. In: Methods in carbohydrate chemistry. Whistler, L. R. and Wolform, R. L. (eds.), Academic Press, New York, pp. 388-403
El-Baz, F. K.; Aboul-Enein, M. A.; El-Baroty, G. S.; Youssef, A. M. and Abd El-Baky, H. H. (2002). Accumulation of antioxidant vitamins in Dunaliella salina. Online J. Biolog.  Sci., 2: 220-223.
Fabregas, J.; Abalde, J.; Cabezas, B. and Herrero, C. (1989). Changes in protein, carbohydrates and gross energy in the marine microalga Dunaliella tertiolecta (Butcher) by nitrogen concentrations as nitrate, nitrite and urea. Aquacul. Engng., 8: 223-239.
Foyer, C. H. (1997). Oxygen metabolism and electron transport in photosynthesis. In: Scandalios J. (ed.), Molecular Biology of Free Radical Scavenging Systems. Cold Spring Harbor Laboratory Press, New York, pp. 587-621.
Frank, J. (2005). Beyond vitamin E supplementation: An alternative strategy to improve vitamin E status. J. Plant Physiol., 162: 834-843.
Geider, R. J.; Maclntyre, H. L.; Graziano, L. M. and Mckay, R. M. L. (1998). Responses of the photosynthetic apparatus of Dunaliella tertiolecta (Chlorophyceae) to nitrogen and phosphorus limitation. Eur. J. Phycol., 33: 315-323.
Gertz, C. (1990). HPLC “Tips and Tricks” with over 1000 applications. Great Britian at the Alden press .Oxford, pp. 608.
Ghoudhari, S. M.; Ananthanarayan, L. A. and Singhal, R. S. (2008).Use of metabolic stimulators or inhibitors for enhanced production of β-carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896. Bioresource Technol., 99: 3166-3173.
Gόmez-Coronado, D. J. M.; Ibañez, E.; Rupérez, F. J. and Barbas, C. (2004). Tocopherol measurement in edible products of vegetable origin. J. Chromatogr. A, 1054: 227-233.
Hapette, A. M. and Poulet, S. A (1990). Variation of vitamin C in some common species of marine plankton. Mar. Ecol. Prog. Ser., 64: 69-79.
Hartmann, A. and Hurek, T. (1988).Effect of carotenoid overproduction on oxygen tolerance of nitrogen fixation in Azospirillium brasilense sp7. J. Gen. Microbiol., 134: 2449-2455.
Hirvonen, T.; Virtamo, J.; Korhonen, P.; Albanes, D. and Pietinen, P. (2000). Intake of flavonoids, carotenoids, vitamins C and E, and risk of stroke in male smokers. Stroke, 31: 2301-2306.
Hu, Q.; Pan, B.; Xu, J.; Sheng, J. and Shi, Y. (2007). Effects of supercritical carbon dioxide extraction conditions on yields and antioxidant activity of Chlorella pyrenoidosa extracts. J. Food Engin., 80: 997-1001.
Hunter, D. J. and Willer, W. C. (1994). Diet, body build, and breast cancer. Ann. Rev. Nutr., 14: 393-418.
Ip, P.F. and Chen, F. (2005). Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem., 40: 733-738.
Jimenez, C. and Niell, F. X. (1991). Growth of Dunaliella viridis Teod., effect of salinity, temperature and nitrogen concentration. J. Appl. Phycol., 3: 319-328.
Kaplan, D.; Richmond, A. E.; Dubinsky, Z. and Aaronson, S. (1986). Algal nutrition. In: A. Richmond (Editor), Handbook of Microalgal Mass Culture. CRC Press. Boca Raton. FL. pp. 147-197.
Kay, A. R. (1991). Microaglae as food and supplement. Critical Rev. Food Sci. Nutr., pp: 30-55.
Kruk, U. and Strzalka, K. (1995).Occurrence and function of α-tocopherol quinone in plants. J. Plant Physiol., 145: 405-409.
Küpper, F. C.; Kolareg, B.; Guern, J. and Potin, P. (2001). Oligoguluronates elicit an oxidative burst in the brown algal kelp Laminaria digitata. Plant Physiol., 125: 278-291.
Kusmic, C.; Barsacchi, R.; Barsanti, L.; Gualtieri, P. and Passarelli, V. (1999). Euglena gracilis as source of the antioxidant vitamin E. Effects of culture conditions in the wild strain and in the natural mutant WZSL.  J. Appl. Phycol., 10: 555-559.
Leach, G.; Oliveira, G. and Morais, R. (1998). Production of carotenoid rich products by alginate entrapment and fluid-bed drying of Dunaliella salina. J. Sci. Food Agric., 76: 298-302.
Lerch, W. (1937). Untersuchungen uber Entwicklung und Fortpflanzung in der Gattung Dunaliella. Arch. Protistenkd., 88: 236.
Loeblich, L. A. (1982). Photosynthesis and pigments influenced by light intensity and salinity in the halophile Dunaliella salina (Chlorophyta). J. Mar. Biol. Ass., U.K., 62: 493-508.
Lowry, O. H.; Rosebrongh, N. J.; Farr, A. L. and Randall, R. J. (1951). Protein measurements with Folin phenol reagent. J. Biol.Chem., 193: 265-275.
Mallick, N. (2004): Copper-induced oxidative stress in the chlorophycean microalga Chlorella vulgaris: response of the antioxidant system. J. Plant Physiol., 161: 591-597.
Mano, J. (2002). Early events in environmental stresses in plants-induction mechanisms of oxidative stress. In: D. Inze and M.V. Montagu (eds.), Oxidative stress in plants. Taylor and Francis Inc. pp. 217-246.
Mc Lachlan, J. (1964).Some considerations of the growth of marine algae in artificial media. Can. J. Microbiol., 10: 769-782.
Metzner, H.; Rau, H. and Senger, H. (1965): Untersuchungen zur synchronisier barkeit Einzelner pigmentmangel–Mutanten von Chlorella. Planta (Berl.), 65: 186 -194.
Nichols, H. W. (1973). Growth media–fresh water. In: Handbook of phycological method. Culture methods and growth measurements. J.R. STEIN (ed.), Cambridge Univ. press. Cambridge. London, pp. 7-24.
Osmond, B.; Badger, M.; Maxwell, K.; Björkman, O. and Leegood, R. (1997). Too many photons: photorespiration, photoinhibition and photooxidation. Trend Plant Sci., 2(4): 119-121.
Parker, C. A. and Joyce, T. A. (1967). Delayed fluorescence and some properties of the chlorophyll triplets. Photochem. Photobiol., 6: 395.
Parviainen, M. T. (1995). In: A. Townshend (ed.), Encyclopedia of analytical science, vol. (9), Academic press Landon.
Pei-Ram, L. and Wei-Hua, W. (1999). Physiological mechanisms of growth inhibition by concentrated potassium in Dunaliella salina. Acta Botanica Sinica-Chinese, 41: 617-623.
Phadwal, K. and Singh, P.K. (2003). Effect of nutrient depletion on β-carotene and glycerol accumulation in two strains of Dunaliella sp. Bioresource Technol., 90: 55-58.
Polle, A. and Rennenberg, H. (1994). Field studies on Norway spruce trees at high altitudes. II. Defense systems against oxidative stress in needles. New Phytol., 121: 635-642.
Rice, M.; Cohen, E.; Vishkautsan, M.; Cojocau, H. E.; Gotrlieb, E. and Arad, S. (1994). Accumulation of secondary carotenoids in Chlorella zofingiensis. J. Plant Physiol., 144: 287-292.
Salguero, A.; de la Morena, B.; Vigara, J.; Vega, J. M.; Vilchez, C. and Leόn, R. (2003). Carotenoid as protective response against oxidative damage in Dunaliella bardawil. Biomol. Engng., 20: 249-253.
Shaish, A.; Avron, M.; Pick, U. and Ben-Amotz, A. (1993). Are active oxygen species involved in induction of β-carotene in Dunaliella bardawil? Planta, 190: 363-368.
Shutter, B. (1979). A model of physiological adaptation in unicellular algae. J. Theor. Biol., 79: 519-552.
Sosik, H. M. and Mitchell, B. G. (1991). Absorption, fluorescence, and quantum yield for growth in nitrogen-limited Dunaliella tertiolecta. Limnol. Oceanogr., 36: 910-921.
Taha, H. M. (2002). Comparative physiological and chemotaxonomical studies of some species of Dunaliella (Volvocales). Ph. D. thesis, Faculty of Science, Alexandria University, Egypt, pp. 506.
Taketomi, H.; Soda, K. and Kastsui, G. (1983). Results of screening test in tocopherols in microbial realm. Vitamins, 57: 133-138.
Tani, Y. and Tsumura, H. (1989). Screening for tocopherol-producing microorganisms and α-tocopherol production by Euglena gracilis Z.  Agric. Boil. Chem., 53: 305-312.
Uriarte, I.; Farias, A.; Hawkins, J. S. and Bayne, B. L. (1993).Cell characteristics and biochemical composition of Dunaliella primolecta (Butcher) conditioned at different concentrations of dissolved nitrogen. J. Appl. Phycol., 5:447-453.
Utting, S. D. (1985).Influence of nitrogen availability on the biochemical composition of three unicellular marine algae of commercial importance. Aquacult. Eng., 4: 175-190.
Young, E. P. and Beardall, J. (2003). Photosynthetic function in Dunaliella tertiolecta (Chlorophyta) during nitrogen starvation and recovery cycle. J. Phycol., 39: 897-905.
Yu, B. P. (1994). Cellular defenses against damage from reactive oxygen species. Physiol. Rev., 74: 139-162.