EPIPHYTIC DIATOMS AND TROPHIC STATUS OF WATER ASSOCIATION IN SUEZ CANAL, GULF OF SUEZ AND RED SEA COAST OF EGYPT

Document Type : Original Article

Author

Fac. of Science, Botany Dept., Damietta Univ., New Damietta, P.O. Box 34517.

Abstract

Seasonal physicochemical analysis of sea water and epiphytic diatoms at Suez Canal (3 sites), Gulf of Suez (3 sites) and Red Sea coast of Egypt (6 sites) indicated that nutritional status of water (nitrogen, phosphorus and silicon) decreased sharply downward (from Qantara to Marsa Alam). Meanwhile, the surface water salinity and water temperature increased. The total annual number of epiphytic diatom species decreased gradually from Qantara (48 species) towards El-Sharm (15 species). The most frequent diatom species belonging to genera Navicula, Cynedra, Achnanthes, Eunotia, Diatoma, Cocconeis, Cymbella, Licmophora, fragilaria, Amphora and Melosira. The maximum growth of epiphytic diatom (cell number and biomass) was recorded during summer, while the minimum during winter. A dendrogram of diatom communities resulted in five clusters according to temporal and trophic status of water. Water samples were mesoeutrophic at Ras Ghareib, Fayeid and Qantara during summer, with Generic Diatom Index (GDI) equals 11-12. Most water samples of cluster I and II were oligo-mesotrophic (GDIequals12-14) during spring and autumn. Oligotrophic water (GDI>14) were recorded in samples belongs to clusters IV and V while most samples are related to cluster III.

Keywords


Abdel-Baky, J. M. (2001). Effect of some wastes on the algal biodiversity in the delta region of the River Nile, M. Sc. Thesis, Bot. Dept., Mansoura Univ. Egypt, pp 377.
Abou- Aisha, K H. M.; Kobbia, I. A.; EL- Abyad, M. S.; Shabana, E. F. and Schanz, F. (1995). Impact of phosphorus loading on macroalgal communities in the Red Sea coast of Egypt. Water, Air, Soil Pollution, 83: 285-297.
Adams, V. (1990). "Water and wastewater examination manual". Lewis publishers, USA, pp. 247.                                       
Adesalu, T. A.; Abiola, T. O. and Bofia, T.O. (2008). Studies on the Epiphytic Algae Associated with Two Floating Aquatic Macrophytes in a sluggish Non- Tidal Polluted Creek in Lagos, Nigeria. Asian J. Sci. Res., 1: 363-373.
Anna, W.; Evelyn, G.; Laurel, C.; Thomas, F. and Joseph, B. (2010). Distribution of diatoms and Development of diatom-Based Models for inferring Salinity and nutrients concentrations in Florida Bay and Adjacent Coastal Wetlands of South Florida (USA). J. Estuaries and Coasts, 33:1080-1098.
Anton, R. H.; Robert, L. and Thompson, J. R. (1996). The influence of a dissolved inorganic-N-gradient on phytoplankton community dynamics in a chain of lakes. Hydrobiol., 319: 225-235.
Clifford, H. T. and Stephenson, W. (1975). An introduction to numerical classification. Academic Press, London, 229p.
Cook, G. (2007). Benthic diatoms in the Salinas of the Dry Creek salt fields, South Australia. Hydrobiol., 576 (1): 61-68.
Coste,  M. and Ayphassorho, H. (1991). Etude de la qualité des eaux du Bassin Artois-Picardie à l'aide des communautés de diatomées benthiques (Application des indices diatomiques). Raport Cemagref. Bordeaux – Agence de l'Eau Artois- Picardie, Douai: 277 pp.
Cronberg, G. (1982). Phytoplankton changes in Lake Trumen induced by restoration. in: Long- term Wade- Lake  studies and food- web experiments. Folia Limnologica Scandinavica, 18: 1-119.
Cupp, E. E. (1943). Marine plankton diatoms of the west coast of North America. Bull. Scripps. Inst. Oceanogr. 5:1-238.
Dillon, P. J. and Rigler, F. H. (1974). The phophorus-Chlorophyll relationship in lakes. Limnol. Oceanogr., 19:767-773.
Durai, K. and Pandiyan, G. (2011). Method for the isolation of epiphytic algae. Int. J. Curr. Sci., 1: 107-108.
Elisabeth, M. G.; Claudia, F. and Andrea, G. (2003). Epiphyte biomass and  elemental composition on submersed macrophytes in shallow eutrophic lakes. Hydrobiol., 509 : 559-565.
EPA (1983). "Methods for Chemical Analysis of Water and Wastes". U.S. Environ. Protec. Agency, EPA-690/4-79-020, Cincinnati, OH, USA.     
Fatam,  C. and Tufan,  K. (2010). Tour new record for the benthic diatoms from the Aegean Sea. Turk. J. Bot., 34: 118-128.
Ganf, G. G. (1974). Diurnal mixing and vertical distribution of phytoplankton in a shallow equatorial lake (Lake George, Uganda). J. Ecol., 62: 611-629.
Gordon, N.; Adams, J. B. and Bate, G. C. (2007): Epiphytes of the St. Lucia Estuary and their response to water level and salinity changes during a severe drought. Aquatic Bot., 88: 66 - 76.
Hassan, F. M.; Hadi, R. A.; Kassim, T. I. and Hassany, S. Al. (2012).Systematic study of epiphytic algal after restoration of Hawizah marshes, southern of Iraq. International Journal of Aquatic Science, 3(1):37-57
Head, S. M. (1987). Corals and coral reefs of the Red Sea; in A. J. Edwards and  S. M. Head (eds.), Red Sea (Key environments), Pergamon Press, Oxford,Pp128- 151.
Janina, K.; Pertti, E.; Barbara, K. and Krzysztof, W. (1998). Use of benthic diatom communities to evaluate water quality in rivers of southern Poland. Journal of Applied Phycology, 10: 193-201.
Juttner, I.; James, P. C. and Steve, J. O. (2010). Using diatoms as quality indicators for a newly-formed Urban Lake and its Catchment Environ. Monit Assess., 162: 47-65.
Katoh, K. (1991). Diatom assemblages in a high moor: an observed correlation between species composition and pool size. Japan Journal of Phycology, 39:363-368.
Krammer, K. and Lange-Bertalot, H. (1986-1991). Bacillariophyceae Parts 1-4. Volume 2 of "Süsswasserflora von Mitteleuropa", edited by Ettl, H. et al. Gustav Fischer Verlag, Stuttgart, Germany. 1-4.
Kuwana, K.; Matsuka, S.; Kono, S.; Ninomiya, M.; Onishi, J. and Saga, N. (1998). Growth and the content of laurenterol and debromolaurinterol in Laurencia okamurae (Ceramiales,Rhodophyta). J.  Applied Phycol., 10: 9-14.
Lai, S. D. and Wang, J. (2010). Multivariate analysis of dominant attached diatoms and water quality in Szu-Tsao-Taiwan. J. Diatom, 20: 133-143.
Lecointe, C.; Coste, M. and Prygiel, J. (1993). OMNIDIA': software for taxonomy, calculation of diatom indices and inventories management. Hydrobiol., 296/270:509-513.
Lesley, P. B.; Kenneth, L. H.; Thomas, A. F.; Anna, R. A. and James, W. F. (2010). Nutrient enrichment, grazer identity, and their effects on epiphytic algal assemblages: field experiments in subtropical turtle grass Thalassia testudinum meadows. Marine Ecology Progress Series, 406:33-45.
Madkour, F. F. (2000). Ecological studies on the phytoplankton of the Suez Canal, Ph. D. thesis, Bot. Dept, Suez Canal Univ., Egypt, pp211.
Person, T. R. and Strickland, J. D. (1965): A practical handbook of seawater analysis. Bull. Fish. Res. Bd. Can., 167pp.
Poisson, A.; Morcos, S.; Souvermezoglou, E. and Ivanoff, A. (1984): Some aspects biogeochemical cycles in the Red Sea with special reference to new observations made in summer 1982. Deep Sea Res., 31: 707-718.
Polat, S. and Isik, O. (2002). Phytoplankton distribution, diversity and nutrients at the north- eastern Mediterranean coast of Turkey (Karatas- Adana). Turk. J. Bot., 26: 77- 86.
Ter Braak, C. J. F. (1987): The analysis of vegetation – environment relationships by Canonical Correspondence Analysis (CCA).  Vegetatio, 69: 69-77.
Tiina, N.; Helen, L. and Tõnu, F. (2010). Primary production of aquatic macrophytes and their epiphytes in two shallow lakes (Peipsi and Võrtsjärv) in Estonia. Aquat. Ecol., 44:83-92.
Trono, G. C. Jr. and Tolentino, G. L. (1992). The reproductive phenology of Sargassum species (Fucales, Phaeophyta) in Bolinao, Pangasinan. In: Calumpong, H. P., Meñez E. G., editors, Proc. 2nd Rp-USA Phycology Symp. Workshop. Los Banos, Laguna, Philippines: Philippine Council for Aquatic and Marine Research and Development, p.181-193.
Vis, C.; Hudon, C. and Carignan, R. (2006). Influence of the vertical structure of macrophyte stands on epiphyte community metabolism. Fisheries and Aquatic Sciences, 63 (5): 1014-1026.