THE EFFECT OF CHLORAMPHENICOL AND COPPER ON THE CELL ULTRASTRUCTURE OF SCENEDESMUS SP.

Document Type : Original Article

Author

Department of Botany and Microbiology, Faculty of Science, Helwan University, Cairo, Egypt.

Abstract

The present study aimed to evaluating the effect of chloramphenicol (CAP) and copper (CuSO4) on the cell ultra-structure of Scenedesmus sp. Three different concentrations of CuSO4 (10-3, 10-4, 10-5 M) and two of CAP (0.25 and 0.5%) were added to exponentially growing algal culture (107 cells ml-1) for 24 hrs. Cells treated with 10-3 M CuSO4 and 0.5% chloramphenicol which gave high amount of cell lyses were chosen for examination by electron microscopy. Transmission electron microscopy photographs of Scenedesmus cells treated with CuSO4 showed deformation of the chloroplasts, while numerous vesicles were observed in the cytoplasm. The three–laminar sheath (TLS) and the reticulate layer (RL) had no differences in comparison with control. On the other hand, tubular spikelets had no distinct shape compared with the control. The inner layer of cell wall (cellulose layer) showed shrinkage in thickness. Moreover, cells treated with 0.5% CAP showed that chloroplast thylakoids were reduced in size and number, disorganization, shrinkage in all protoplasmic components and increasing in the number of vacuoles and cellulose layer thickness. These results may help in understanding the effect of some toxins such as antibiotics and heavy metals on the cell structure of microalgae.

Keywords


Amado, D. P.; Marini, C. B.; Gonçalves, M. M. M.A. and da Costa, A. C. A. (2009). Toxicidade e Bioacumulaçăo de Cobre por Microalgas dos Gêneros Monoraphidium sp. e Scenedesmus sp., Simpósio Nacional de Fermentações—SINAFERM, Natal, Brazil.
Campbell, P. G. C. (1995). Interactions between trace metals and aquatic organisms: A critique of the free-ion activity model. In: Tessier, A., Turner, D.R. (Eds.), Metal Speciation and Bioavailability in Aquatic Systems. John Wiley & Sons Ltd, Chichester, England, pp. 45-102.
Fargasová, A.; Bumbalová, A. and Havranék, E. (1999). Ecotoxicological effects and uptake of metals (Cu+, Cu2+, Mn2+, Mo6+, Ni2+ and V5+) in freshwater alga Scenedesmus quadricauda. Chemosphere, 38:1165-1173.
Franklin, N. M.; Stauber, J. L.; Apte, S. C. and Lim, R. P. (2002). Effect of initial cell density on the bioavailability and toxicity of copper in microalgal bioassays. Environ. Toxicol. Chem., 21:742-751.
Goran, K.; Mirjana, K.; Nikola, L. and Hrvojka, U. (2001). The effect of chloramphenicol on the symbiosis between alga and hydra. Biologia Bratislava, 56(6):605-610.
Lai, H. T.; Hou, J. H.; Su, C. I. and Chen, C. L. (2009). Effects of chloramphenicol, florfenicol, and thiamphenicol on growth of algae Chlorella pyrenoidosa, Isochrysis galbana and Tetraselmis chui. Ecotoxicol Environ. Saf., 72(2):329-334.
Levy, J. L.; Stauber, J. L. and Jolley, D. F. (2007). Sensitivity of marine microalgae to copper: the effect of biotic factors on copper adsorption and toxicity. Sci. Total. Environ., 387:141-154.
Levy, J.; Angel, B.; Stauber, J. L.; Poon, W. L.; Simpson, S. L.; Cheng, S. and Jolley, D. F. (2008). Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species. Aquatic Toxicology, 89:82-93.
Maršalek, B. and Rojıcková, R. (1996). Stress factors enhancing production of algal exudates: a potential self-protective mechanism? Z. Naturforsch., 51:646-650.
Mishra, A. and Jha, B. (2009). Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress. Bioresource Technol., 100:3382-3386.
Nacorda, J. O.; Martinez-Goss, M. R.; Torreta, N. K. and Merca, F. E. (2007). Metal resistance and removal by two strains of the green alga, Chlorella vulgaris Beijerinck, isolated from Laguna de Bay, Philippines. J. Appl. Phycol., 19:701-710.
Reynolds, E. S. (1963).The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol., 17(1): 208-212.
Saçan, M. T.; Oztay, F. and Bolkent, S. (2007). Exposure of Dunaliella tertiolecta to lead and aluminium: Toxicity and effects on ultrastructure. Biol. Trace. Elem. Res., 120:264-272.
Salah El Din, Rawheya A.; Gharib, Fatma A.; Ghazy, Safeya M. and Johny, E. Y. R. (2009). Effect of some heavy metals on growth of Scenedesmus obliquus (Turpin) Kützing. Egyptian Journal of Phycology, 10:23-36.
Schauber-Berigan, M. K.; Dierkes, J. R.; Monson, P. D. and Ankley, G. T. (1993). pH dependent toxicity of Cd, Cu, Ni, Pb and Zn to Ceriodaphnia dubiaPimephales promelasHyalella azteca and  Lumbriculus variegatus. Environ. Toxicol. Chem., 12:1261-1266.
Słowik, J. and Pawlaczyk-Szpilowa, M. (1979). Interaction between Scenedesmus obliquus and the Heavy Metals Copper and Lead. Acta Hydrochimica et Hydrobiologica,  7(5):503-509.
Smith-Johannsen, Heidi and Gibbs, Sarah P. (1972) Effects of chloramphenicol on chloroplast and mitochondrial ulltrastructure in Ochromonas danica. The Journal of Cell Biology, 52:598-614.
Staehelin, L. A. and Pickett-Heaps, J. D. (1975). The ultrastructure of Scenedesmus (Chlorophyceae) species with the "reticulate" or "warty" type of ornamental layer. Journal of Phycology, 11(2):163-185.
Taylor, F. J. (1963). The Effect of Chloramphenicol on the Growth of Scenedesmus quadricauda. J . Gen. Microbiol., 39:275-284.
Zbigrew, T. and Jerzy B. (1995). Sensitivity to fuel oil and cell wall structure of some Scendesmus (Chlorococcales) strains. Acta Societatis Botanicorum Poloniae, 64(2):139-147.
Zhang, W.; Sun, W.; An, S.; Xiong, B.; Lin, K.; Cui, X. and Guo, M. (2013). Acute and chronic toxic effects of chloramphenicol on Scenedesmus obliquus and Chlorella pyrenoidosa. Water Environ Res., 85(8):725-32.
Zhang-Li, H. U.; Yuk-Shan, W.; Fung-Yee, T. (2002). Bioaccumulation of Nickel by various Scenedesmus species in culture solution containing Nickel. Acta Botanica Sinica, 44(8):978-982.