COMPARATIVE STUDY ON THE BIOSORPTION AND DESORPTION OF THREE SELECTED TOXIC HEAVY METALS BY SOME MICROALGAE

Document Type : Original Article

Authors

1 Botany Department, Faculty of Science, Ain Shams University, Cairo, Egypt.

2 Water Pollution Department , National Research Centre, Dokki, Cairo, Egypt

Abstract

Biosorption has emerged as a cost-effective and efficient alternative technology for removal of heavy metals which produce adverse health effects on humans and living organisms. In the present study the biosorption and desorption of cadmium, lead and zinc by Chlamydomonas variabilis, Anabaena constricta andNitzschia linearis were evaluated. Algal species were isolated and cultivated on a large scale to get an intensive biomass sufficient for metal binding experiments. The experimental adsorption data were fitted to the Langmuir and Freundlich adsorption model. Characterization of the metal-loaded biosorbent by FTIR spectrum, TEM and EDX analysis confirmed that the metal ions can bind to anionic groups due to electrostatic attraction and sorption capacity is strongly influenced from the type and number of functional groups of the biosorbent. The maximum efficiencies of Cd, Pb and Zn removal using C. variabilis were 97.9%, 96.1% and 96.1% for oven dried biomass and 96.3%, 94.2% and 94.1% for activated biomass. For dried and activated biomass prepared of A. constricta the maximum percentage of removal of heavy metals were95.1%, 93.7%, and 93.1% and94.3%, 96.1% and 94.1%. The maximum removals by N. linearis were 95.5%, 96.6%, 94.8% for oven dried biomass and 93%, 94.5% and 93.8% for activated one respectively. There are no clear variations in biosorption of cadmium, lead and zinc by sun dried, oven dried and activated biomass of C. variabilis, A. constricta and N. linearis. It is better to use sun dried algae as low cost biosorbent for metals removal.

Keywords


Abdel-Aty, A.M.; Nabila, S. A.; Hany, H.A. and Rizka, K.A. (2013). Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass. J. Adv. Res., 4: 367–374.
Aksu, Z. and Dönmez, G. (2006). Binary biosorption of cadmium (II) and nickel(II) onto dried Chlorella vulgaris: Co-ion effect on mono-component isotherm parameters. Process Biochem., 41: 860–868.
Anayurt, R.A.; Sari, A. and Tuzen, M. (2009). Equilibrium, thermodynamic and kinetic studies on biosorption of Pb (II) and Cd(II) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass. Chem. Engine. J., 151: 255261.
Arıca, Y. M.; Tüzün, I.; Yalçın, E.; İnce, Ö. and Bayramoğlu, G. (2005).  Utilisation of native, heat and acid-treated microalgae Chlamydomonas reinhardtii preparations for biosorption of Cr (VI) ions. Process Biochem., 40: 2351–2358.
Atolaiye, B.O., Babalola, J.O., Adebayo, M.A. and Aremu, M.O. (2009). Equilibrium modeling and pH-dependence of the adsorption capacity of Vitex doniana leaf for metal ions in aqueous solutions. Afr. J. Biotech., 8: 507514.
Babel, S. and Kurniawan, A.T. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: A review. J. Hazard. Mater., 97: 219-243.
Bakatula, E.N.; Cukrowska, E.M.; Weiersbye, I.M.; Mihaly-Cozmuta, L.; Peter, A. and Tutu, H. (2014). Biosorption of trace elements from aqueous systems in gold mining sites by the filamentous green algae (Oedogonium sp.). J. Geochemical Exploration, 144: 492–503.
Barange, M.; Srivastava, A.; Srivastava, J.K. and Palsania, J. (2014). Biosorption of Heavy Metals from Wastewater by Using Microalgae. Inter. J. of Chem. and Physi. Sci., 3: 67 -81.
Bulgariu, L. and Bulgariu, D. (2014). Enhancing Biosorption Characteristics of Marine Green Algae (Ulva lactuca) for Heavy Metals Removal by Alkaline Treatment.  J. Bioproces. Biotechniq., 4:1.
Cesar, T.T.R. and Marco, Z.A.A. (2004). Biosorption of heavy metals using rice milling by-products: characterisation and application for removal of metals from aqueous effluents. Chemosphere, 54: 987–995.
Chinedu, J.O.; Charles, M. and Onyema, M. A. (2012). Equilibrium, Kinetic, Thermodynamic and Thermal Stability Studies on Sorption of Ni (II) ions from Aqueous Solution using Dead Biomass of Fresh Water Green Alga Cosmarium panamense. Der Chemica Sinica, 3 (1): 38-51.
Christobel, J. and Lipton, A.P. (2105). Evaluation of macroalgal biomass for removal of heavy metal Arsenic (As) from aqueous solution. Inter. J. Appli. or Innov. Engine. & Manag. (IJAIEM), 4: 94-104.
Cohn, S. A.; Farrell, J. F.; Munro, D. J.; Ragland, R. L.; Weitzell, R. E. J. and Wibisono, B. L. (2003). The effect of temperature and mixed species composition on diatom motility and adhesion. Diatom Res., 18: 225–43.
Deng, L.; Yingying, S.; Hua, S.; Wang, X. and Zhu, X. (2007).Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. J. Hazard. Mater., 143: 220–225.
Duygu, O. and Bikem, Ö. (2013).Characterization of Heavy Metal Biosorption from Aqueous Solutions with Nitzschia closterium Biomass. The ICOEST Conf. (Part 2) Cappadocia, 96-107.
Eggen, M. (2012). Uptake and biological response to zinc by the Diatom Thalassiosira pseudonana. Norwegian University of Science and Technology. Department of Biotechnology.
El-Sikaily, A.; El Nemr, A. and Khaled, A. (2011).Copper sorption onto dried red alga Pterocladia capillacea and its activated carbon. Chem. Engine. J., 168: 707–714.
Errasquin, E.L. and Vazquez, C. (2003). Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere, 50: 137–143.
Ferreira, L.S.; Rodriguesa, M.S.; Monteiro de Carvalhoa, J.C.; Lodi, A.; Finocchio, E.; Perego, P. and Converti, A. (2011).Adsorption of Ni2+, Zn2+ and Pb2+ onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris. I. Single metal systems. Chem. Engine. J., 173: 326– 333.
Figueira, M.; Volesky, B.; Azarian, K. and Ciminelli, V.S. (1999). Multimetal biosorption  in  a  column  using  Sargassum  biomass,"  Biohydrometallurgy  and  the  environment  toward  the  mining  of  the  21st  century  (part  b ):  International  biohydrometallurgy  symposium -  proceedings ,  R.  Amils  and  A.  Ballester (Editors), Elsevier Science, Amsterdam, the Netherlands, 503 -512.
Gaur, N. and Dhankhar, R. (2009). Removal of Zn+2 ions from aqueous solution using Anabaena variabilis: Equilibrium and Kinetic studies .Int. J. Environ. Res., 3: 605-616.
Geitler,  L. (1932). Cyanophyceae. In L. Rabenhorst (Ed.).
Guibaud, G.; Tixier, N.; Bouju, A. and Baudu, M. (2003). Relation between extracellular polymers composition and its ability to complex Cd, Cu and Pb. Chemosphere, 52: 1701-1710.
Gupta, V. K. and Rastogi, A. (2008). Biosorption of lead from aqueous solutions by nonliving algal biomass Oedogenium sp. and Nostoc sp. – a comparative study. Colloids Surf. B: Biointerfaces.; 64 (2): 170–178.
Gupta V.K. and Rastogi, A. (2009).Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. J. Hazard. Mater., 163: 396–402.
Gupta V.K.; Rastogi, A.; Saini, V.K. and Jain, N. (2006). Bisorption of copper (II) from aqueous solutions by algae Spirogyra species. J. Colloid Interface Sci., 296 (1): 53–60.
Hawari, A.H. and Mulligan, C.N. (2006). Heavy metals uptake mechanisms in a fixed-bed column by calcium-treated anaerobic biomass. Process Biochem., 41: 187-198.
Huang, J.; Liu, Y.; Jin, Q.; Wang, X. and Yang, J. (2007). Adsorption studies of a water soluble dye, Reactive Red MF-3B, using sonication-surfactant-modified attapulgite clay. J. Hazard. Mater., 143(1-2): 541-548.
Hustedt, F. (1976). Bacillariophyta (Diatomaceae). Otto Koeltz Science Publishers W-Germany.
Jeyakumar, R.P.S. and Chandrasekaran, A.V. (2014). Adsorption of lead (II) ions by activated carbons prepared from marine green algae: Equilibrium and kinetics studies. Inter. J. Indust. Chem., 5:2.
Karthikeyan, S.; Balasubramanian, R. and Lyer, C. S. P. (2007). Evaluation of the marine alga Ulva fasciata and Sargassum sp. for the biosorption of Cu (II) from aqueous solution. Bioresource Techn., 98: 452-455.
Komárek, J. and Fott, B. (1983).Chlorophyceae (Grünalgen), Ordnung Chlorococcales In: Huber-Pestalozzi G. (Ed.): Das Phytoplankton des Süsswassers. Die Binnengew ässer 16, 7/1: 1-1044, Schweizerbart Verlag, Stuttgart.
Kumar, K.S.; Dahms, H.U.; Won, E.J.; Lee, J.S. and Shin, K.H. (2015). Microalgae–A promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety, 113: 329–352.
Kumar, R.; Singh, R.; Kumar, N.; Bishnoi, K. and Bishnoi, N.R. (2009).Response surface methodology approach for optimization of biosorption process for removal of Cr(VI), Ni(II) and Zn(II) ions by immobilized bacterial biomass sp. Bacillus brevis, Chem. Eng. J., 146: 401–407.
Matei, G.M.; Kiptoo, J.K.; Oyaro, N.K. and Onditi, A.O. (2014). Biosorption of selected heavy metals by the biomass of the green alga Spirogyra sp. Physics, Chem. and Techn., 12 (1): 1 – 15.
Monteiro, C.M.; Castro, P.M.L. and Malcata, F.X. (2012). Metal uptake by microalga: underlying mechanisms and practical applications. Biotechnol.Prog., 28(2): 299–311.
Poulsen, N.; Berne, C.; Spain, J. and Kröger, N. (2007).Silica Immobilization of an enzyme through genetic engineering of the diatom Thalassiosira pseudonana. Angewandte Chemie, 46: 1843–1846.
Priyadarshani, I.; Sahu, D. and Rath, B. (2011). Microalgal bioremediation: current practices and perspectives. J. Biochem. Tech., 3: 299–304.
Romera, E.; González, F.; Ballester, A.; Blázquez, M.L. and Muñoz, J.A. (2007).Comparative study of biosorption of heavy metals using different types of algae. Bioresource Technology, 98: 3344–3353.
Sari, A. and Tuzen,  M. (2008). Biosorption of cadmium (II) from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater., 157: 448–454.
 
 
Sethunathan, N.; Megharaj, M.; Smith, L.; Kamaludeen, S.P.B.; Avudainayagam, S. and Naidu, R. (2005).Microbial role in the failure of natural attenuation of chromium (VI) in long-term tannery waste contaminated soil. Agriculture Ecosystems & Environment, 105: 657661.
Sharma, M.; Kaushik, A. and Kaushik, C.P. (2011). Sequestration of Co (II) from aqueous solution using immobilized biomass of Nostoc linckia waste from a hydrogen bioreactor. Desalination, 276: 408–415.
Sheng, G.;  Wang, S.; Hua, J.; Lua, Y.; Lia, J.; Dongc, Y. and Wanga, X. (2009). Adsorption of Pb (II) on diatomite as affected via aqueous solution chemistry and temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 339 (1-3): 159–166.
Staley, J.T. (1989).Bergey’s Manual of Systematic Bacteriology, Williams & Wilkins Co., Baltimore, MD, 1718-1720.
Stanier, R.Y., Kunisawa,  M.M., and Cohn- Bazire,  G. (1971). Purification and properties of unicellular blue green algae (order chroococcales). Bacteriology review, 35: 171-201.
Tüzün, I., Bayramoğlu, G., Yalçın, E., Başaran, G., Çelik, G. and Arıca, M.Y. (2005). Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II) and Pb(II) ions onto microalgae Chlamydomonas reinhardtii. J. Environ. Manag., 77: 85–92.
Vieira, D.M.; da Costa, A.C.C.; Henriques, C.A.; Cardoso, V.L. and de Franca, F.P. (2007). Biosorption of lead by the brown seaweed Sargassum filipendula - batch and continuous pilot studies. Electr. J. Biotechnol.. 10: 368375.
Wang, J.L. and Chen, C. (2009). Biosorbents for heavy metals removal and their future a review. Biotechnol. Adv., 27: 195-226.
Wang, X.J.; Chen, L.; Xia, S.Q.; Zhao, J.F.; Chovelon, J. and Renault, N.J. (2006). Biosorption of Cu (II) and Pb (II) from aqueous solutions by dried activated sludge. Miner Eng., 19: 968-971.
Yadanaparthi, S.K.R.; Graybill, D. and Von Wandruzska, R. (2009). Adsorbents for the removal of arsenic, cadmium and lead from contaminated waters. J. Hazard. Mater., 171: 1-15.
Yalçın, E.; Ҫavuşoğlu, K. and Kınalıoğlu, K. (2010). Biosorption of Cu2+ and Zn2+ by raw and autoclaved Rocella phycopsis. Journal of Environmental Sciences, 22: 367373.
Yang, C.P.; Wang, J.Q.; Lei, M.; Xie, G.X.; Zeng, G.M. and Luo, S.L. (2010). Biosorption of zinc (II) from aqueous solution by dried activated sludge. J. Environ. Sci., 22: 675680.
Yu, Y.; Addai-Mensah, J. and Losic, D. (2012). Functionalized diatom silica microparticles for removal of mercury ions. Sci. Technol. Adv. Mater., 13: 11.