Antimicrobial and Anticancer Activity of Some Microalgae species

Document Type : Original Article

Authors

1 Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch)

2 Microbial Chemistry Department, National Research Centre.

3 Head of Fertilization, Technology Department, Head of Algal Biotechnology Unit, National Research Centre.

Abstract

Algae are known to produce a wide variety of bioactive secondary metabolites and several compounds have been derived from them with potential for use in the development of new pharmaceutical agents. In this study Chlorella vulgaris, Nannochloropsis oculata and Amphora coffeaeformis were examined for their antimicrobial activity. Methanol extracts of the selected algae were assayed for antimicrobial activity against Pseudomonas aeruginosa, Proteus vulgaris and Escherichia coli as Gram negative bacteria and Staphylococcus aureus, Bacillus subtilis and Streptococcus mutans as Gram positive bacteria. The used fungi were Aspregillus niger, Penicillium expansum and Syncephalastrum racemosum and one examined yeast was Candida albicans. Results indicated that Nannochloropsis oculata methanol crude extract showed the highest activity against bacteria while Chlorella vulgaris methanol crude extract showing the highest activity against fungi and yeast. Moreover, the crude extracts obtained were assayed for cytotoxicity against human Hepatocellular cancer cell line.  The active compound was identified by the GC-mass.

Keywords


Alagesboopathi, C. and Kalaiselvi,N. (2012). Antimicrobial activity of the root, stem and extracts of Argemone Mexicana L. International Journal of Biosciences, 2 (5): 61 – 68.
Bhadury, P. and Wright, C.P. (2004) Exploitation of marine algae: biogenic compounds for potential antifouling application. Planta, 219:561 -578.
Bouhlal, R.; Haslin,C.; Chermann,J.C.; Colliec-jouault,S.; Sinquin,C.; Simon,G.; Cerantola,S.; Riadi,H.andBourgougnon, N. (2011). Antiviral activities of sulfated polysaccharides isolated from Sphaerococcuscoronopifolius (Rhodophytha, Gigartinales) and Boergeseniellathuyoides (Rhodophyta, Ceramiales). Marine Drug, 9: 1187- 1209.
De Felício, R.; De Albuquerque, S.; Young,M.C.M.; Yokoya,N.S.andDebonsi, H.M. (2010). Trypanocidal, leishmanicidal and antifungal potential from marine red alga Bostrychiatenella J. Agardh (Rhodomelaceae, Ceramiales). Journal of Pharmaceutical and Biomedical Analysis, 52(5): 763- 769.
Devi, G.K.; Manivannan, K.; Thirumaran,G.; Rajathi,F.A.A.and Anantharaman, P. (2011). In vitro antioxidant activities of selected seaweeds from Southeast coast of India.Asian.Pacific. Journal of Tropical Medicine,4(3):205- 211.
El-Sheikh, H. H.; El-Hamouly, M. M. A.; El-SayedKhamis, N. H.; Darder, A. F.; EL-Taher, E. M. and Shehata, R. M. (2009). A bioactive secondary metabolite produced by Drechslerarostrata. First International Conference in Pharmaceutical Sciences, El-Beida, Libya, 402-419.
El-Sheikh, H.H.; Elaasser, M.M.; Magdy, H.M. and Abdel-Kareem, S.M. (2013): Antimicrobial, antitumor and antioxidant activities of certain marine fungi isolated from Alexandria. African Journal of Mycology and Biotechnology, 19:13-22.
Ferlay, J.; Soerjomataram,I.; Ervik,M.; Dikshit,R.; Eser,S.; Mathers,C.; Rebelo,M.; Parkin,D.M.; Forman,D.andBray,F.(2012). Cancer incidence and mortality worldwide: GLOBOCAN 2012 v1.0, IARC Cancer Base No. 11. International Agency for Research on Cancer: Lyon, France.
Fukahori, S.; Yano, H. and Akiba, J.(2008). Fucoidan, a major component of brown seaweed, prohibits the growth of human cancer cell lines in vitro. Molecular Medicine Reports, 1 (4):537–542.
Ghasemi, Y.; Yazdi,T.M.;Shafiee, A.;Amini, M.;Shokravi, S. andZarrini, G. (2004). Parsiguine a novel antimicrobial substance from Fischerellaambigua. Pharmaceutical Biology, 42(4-5):318-322.
Gomha, S.M.;  Riyadh, S.M.; Mahmmoud, E.A. and Elaasser, M.M. (2015). Synthesis and anticancer activities of Thiazoles, 1,3-Thiazines, and Thiazolidineusing Chitosan-Grafted-Poly(vinylpyridine) as basic catalyst. Heterocycles, 91(6):1227-1243.
Hasegawa,T.;Matsuguchi, T.; Noda, K.; Tanaka, K.; Kumamoto, S.;Shoyama, Y. and Yoshikai, Y.(2002). Toll- like receptor 2 is at least partly involved in the antitumor activity of glycoprotein from Chlorella vulgaris. International Immunopharmacology, 2 (4): 579-589.
 
 
Ireland, C.M.; Roll, D.M.; Molinsk, T.F.; Mckee, T.C.; Zarbriske, T.M. and Swersey, J.C. (1988). Uniqueness of the Marine Environment: Categories of Marine Natural Product from Invertebrates. In: Biomedical Importance of Marine Organisms. Fautin, D.G., California Academy of Sciences, San Francisco, 41-58.
Isassi,G.D.L.;Hern´andez,S.A. and Vides,L.C. (2000). Ichtyotoxic activity of extracts from Mexican marine macroalgae. Journal of Applied Phycology, 12: 45–52.
Kabara, J.J.;Swieczkowski, D.M.; Conley, A.J. and Truant, J.P. (1972) Fatty acids and derivatives as antimicrobial agents. Antimicrobial Agents and Chemotherapy,2: 23–28.
Kannan, R.R.R.; Arumugam, R.andAnantharaman,P. (2010). Antibacterial potential of three seagrasses against human pathogens.Asian Pacific Journal of Tropical Biomedicine, 11:890-893.
Khan, N.; Ahmed, M.; Hafiz, I.;Abbasi,N.; Ejaz,S. and Anjum,M. (2015). Optimizing the concentrations of plant growth regulators for in vitro shoot cultures, callus induction and shoot regeneration from calluses of grapes. Journal international des sciences de la vigne et du vin, 49 :(1):37-45.
Kim, S.K.; and Karadeniz, F. (2011). Anti- HIV Activity of extracts and compounds from marine algae. Advances in food and nutrition research, 64: 255- 265.
Kulik, M.M. (1995). The potential for using Cyanobacteria (blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi. European Journal of Plant Pathology, 101: 585-599.
Lauritano,C.;Andersen,J.H.;Hansen,E.;Albrigtsen,M.;Escalera,L.;Esposito,F.;Helland,K.;Hanssen,K;Romano,G.andIanora,A.(2016).BioactivityScreeningMicroalgaeforAntioxidant,AntiInflammatory,Anticancer,AntiDiabetes,andAntibacterialActivities. Frontiers in Marine Science, 3:68.
McGaw, L.J.; Jäger, A.K. andVan Staden, J. (2002). Isolation ofantibacterialfatty acids from Schotiabrachypetala. Fitoter,73:431-433.
Mokbel,M.S. and Hashinaga,F.(2005). Antibacterial and Antioxidant Activities of Banana (Musa, AAA cv. Cavendish) Fruits Peel. American Journal of Biochemistry and Biotechnology, 1 (3): 125-131.
Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2): 55-63.
Newman,M.J.; Foster,D.L.;Wilson,T.H.andKaback,H.R. (1981). Purification and reconstitution of functional lactose carrier from Escherichia coli.The Journal of biological chemistry, 256(22): 11804-11808.
Paterson, I.and Anderson, E.A. (2005). The renaissance of natural products as drug candidates.Science, 310(5747): 451-453.
Pulz, O. and Gross,W.(2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65:635 648.
Salem, Olfat MA, Hoballah EM, Ghazi Safia M, Hanna Suzy N (2014). Antimicrobial activity of microalgal extracts with special emphasize on Nostoc sp. Life Science Journal, 11(12): 752-758.
Sanjeewa,K.K.A.;Fernando,I.P.S.;Samarakoon,K.W.;Lakmal,H.H.C.;Kim,E.A.;Kwon,O.N.;Dilshara,M.G.;Lee,J.B. and Jeon,Y.J.(2016).Anti-inflammatory and anti-cancer activities of sterol rich fractionof cultured marine microalga Nannochloropsis oculata. Algae, 31(3): 277-287.
Seidel, V.; Taylor, P.W. (2004). In vitro activity of extracts andconstituents of Pelagonium against rapidly growing mycobacteria. International Journal of Antimicrobial Agents, 23: 613-619.
Sharma, R.; Khokhar, M.K.; Jat, R.L. and Khandelwal, S.K. (2012).Role of algae and cyanobacteria in sustainable agriculture system.Wudpecker Journal of Agricultural Research, 1 (9): 381 – 388.
Smith, P.; Hiney,M.P. and Samuelsen,O.B.(1994). Bacterial resistance to antimicrobial agents used in fish farming: A critical evaluation of method and meaning. Annual Review of Fish Diseases, 4: 273-313.
Smyrniotopoulos,V.; Vagias,C.andBruyère,C. (2010). Structure and in vitro antitumor activity evaluation of brominated diterpenes from the red alga Sphaerococcuscoronopifolius. Bioorganic & Medicinal Chemistry, 18:1321–1330.
Syed, S.; Arasu ,A. and Ponnuswamy, I.(2015). The uses of Chlorella vulgaris (AS-3) as antimicrobial agent and as a diet: the presence of bio-active molecules which caters the vitamins, minerals in general. International Journal of Bio-Science and Bio-Technology, 7: 185-90.