Characterization of spirugenic iron oxide nanoparticles and their antibacterial activity against multidrug-resistant Helicobacter pylori

Document Type : Original Article

Authors

Microbiology Department-National Organization for Drug Control and Research (NODCAR), Giza, Egypt.

Abstract

In the present study, spirugenic iron oxide nanoparticles (SIONs) were biosynthesized using a new simple, expeditious and benign approach which was achieved by combining ferric chloride with Spirulina platensis water extract. SIONs were inspected using UV spectroscopy on 290nm. The Transmission Electron Microscope (TEM) recorded rod-shaped particles with an average width of 31.04 nm and length 137.51nm. X-Ray Diffractometer (XRD) showed a cubic spinel phase of γ-Fe2O3 (maghemite). Furthermore, SIONs exhibited good antibacterial activity against multidrug-resistant Helicobacter pylori. Our study demonstrated that the Minimum Inhibitory Concentration (MIC) of SIONs against multidrug resistant (MDR) H. pylori was 3.1 µg/ml. TEM image showed the cell rupture of H. pylori indicating fragmented cell membrane and leakage of bacterial components in those culture treated by SIONs. Cytotoxic activity test revealed that SIONs have no adverse effect on human epithelial cell line so it may be used safely as a natural product. The use of S. platensis as a nanofactory for the IONs synthesis could have a great role in the treatment of H. pylori infection in the future.



 

Keywords


Achmadi S.S. and Tri-Panji S. (2000). Pemanfaatan limbah lateks pekat sebagai media pertumbuhan ganggang mikro Spirulina platensis pemghasil asam γ-linoleat. Bogor, Unit Penelitian Bioteknologi Perkebunan, Laporan Riset Unggulan Terpadu (RUT)V,1997-1999. 32.
Ahmed E.A., Abdel Hafez E.H., Ismail A.F.M., El Sonbaty S.M., AbbasH.S. and Salah El Din R.A. (2015). Biosynthesis of Silver Nanoparticles by Spirulina platensis & Nostoc sp., Glob. Adv. Rese. J. Microbiol. IV.4, 36-49.
Ali M.I., Sharma G., Kumar M.A., Jasuja N.D. and Rajgovind I. (2015). Biological Approach of Zinc Oxide Nanoparticles Synthesis by Cell-Free Extract of Spirulina platensis. Int. J. Curr. Eng. Tech.5, 2531-2534.
Arakha M., Pal S., Samantarrai D., Panigrahi T.K., Mallick B.C., Pramanik K., Mallick B.and Jha S. (2015).Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci. Rep.5, 1-12.
Berry A. and Curtis A.S.G. (2003).Functionalization of Magnetic Nanoparticles for Applications in Biomedicine. J. Phys.36, 198-206. doi:10.1088/0022-3727/36/13/203.
Bozzola J.J., and Russell D.L. (1999). Electron microscopy: Principles and Techniques for Biologists, 2nd Ed., Jones and Bartlett Publishers.670p.
Chronakes I.S. (2001). Gelation of edible blue-green algae protein isolates (Spirulina platensis): Thermal transitions, archeological properties, and molecular forces involved.  Bioresour Technol. 77, 19-24.
Cirak Y.M., Ozdek A., Yilmaz D., Bayiz U., Samim E. and Turet S. (2003).Detection of Helicobacter pylori and Its CagA Gene in Tonsil and Adenoid Tissues by PCR. Arch Otolaryngol. Head Neck Surg.129, 1225-1229.
CLSI. (2015). Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria. 3rd ed. CLSI guideline M45. Wayne, PA: Clinical and Laboratory Standards Institute.
CLSI. (2018). Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: CLSI Guideline M100-S28; Wayne, PA: Clinical and Laboratory Standards Institute.
Das R.K., Borthakur B.B. and Bora, U. (2010). Green synthesis of gold nanoparticles using ethanolic leaf extract of Centella asiatica. Mater. Lett. 64, 1445–1447.
Das A. K., Marwal A. and Verma R. (2104a). Bio-reductive Synthesis and Characterization of Plant Protein Coated.Magnetite Nanoparticles. NanoHybrids.2; Vol. 7. 69-86.
Das A.K., Marwal A. and Verma R. (2014b). Datura Inoxia Leaf Extract Mediated One Step Green Synthesis and Characterization of Magnetite (Fe3O4) Nanoparticles. J. Pharm. Nanotechnol. 2, 21-24.

Demin A.M., Pershina A.G., Ivanov V.V., Nevskaya K.V., Shevelev O.B.,Minin A.S., Byzov I.V., Sazonov A.E., Krasnov V.P.and  Ogorodova L.M. (2016). 3-Aminopropylsilane-modified iron oxide nanoparticles for contrast-enhanced magnetic resonance imaging of liver lesions induced by Opisthorchis felineus. Int. J. Nanomedicine.11, 4451–4463.

Devatha C.P., Jagadeesh K. and Patil M. (2018).Effect of Green synthesized iron nanoparticles by Azardirachta Indica in different proportions on antibacterial activity. ENMM. 9, 85-94.

El-Menshawi, B.S., Fayad, W., Mahmoud, K., El-Hallouty, S.M., and El- Manawaty Olofsson M.H. and Linder S.(2010). Screening of natural products for Therapeutic activity against solid tumor. IJEB.48, 258-264.

Farokhzad, O.C. and Langer, R. (2009).Impact of nanotechnology on drug delivery. ACS Nano.3, 16-20.
Farrell D., Dennis C.L., Lim J.K. and Majetich S.A. (2009).Optical and electron microscopy studies of Schiller layer formation and structure. J of Colloid Interface Sci. 331, 394–400.
Glupczynski Y., Burette A. and DeKoster E. (1990).Metronidazole resistance in Helicobacter pylori. Lancet. 338, 976–977.
Guichard Y., Schmit J. and Darne C. (2012).Cytotoxicity and genotoxicity of nanosized and microsized titanium dioxide and iron oxide particles in Syrian hamster embryo cells. Ann. Occup. Hyg.56, 631–644.
Guoa J., Wanga J., Tjiu R. W.W., Pan J. and Liu T. (2012).Synthesis of Fe nanoparticles and graphene composites for environmental applications. J. Hazard. Mater. 225–226, 63–73.
Hasany S.F., Ahmed I., Rajan, J. and Rehman A. (2012).  Systematic Review of the Preparation Techniques of Iron Oxide Magnetic Nanoparticles J. Nanosci.Nanotechnol.2, 148-158.
Kargar M. and Doosti A. (2012).Detection of four clarithromycin resistance point mutations in Helicobacter pylori: comparison of real-time PCR and PCR-RFLP methods. Comp Clin  Pathol ; 22(5):1-7.
Li J. and Perez-Perez G.I. (2018).Helicobacter pylori the latent Human Pathogen or Ancestral Commensal Organism. Front Microbiol.9, 609; doi: 10.3389/fmicb.2018.00609.
Lim J., Yeap S.P., Che H.X. and Low S.C. (2013).Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res. Lett.8, 1-14.
Mahdavi M., Namvar F., Ahmad M. and Mohamad R. (2013). Green Biosynthesis and Characterization of Magnetic Iron Oxide (Fe3O4) Nanoparticles Using Seaweed (Sargassum muticum) Aqueous extract. Molecules. 18, 5954-5964.
Mahdy S.A., Raheed Q.J. and Kalaichelvan P.T. (2012). Antimicrobial activity of zero-valent iron nanoparticles. Int. J Mod. Eng. Res.2, 578–581.
Masarudin M.J., Cutts S.M., Evison B.J., Phillips D.R. and Pigram B.J. (2015). Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [14C]-doxorubicin. Nanotechnol. Sci. Appl.8, 67–80.
Megraud F. (1998). Epidemiology and mechanism of antibiotic resistance in Helicobacter pylori.Gastroenterol. 115, 1278–1282.
Megraud F. and Lehours P. (2007).Helicobacter pylori detection and antimicrobial susceptibility testing. Clin. Microbiol. Rev.20, 280-322.
Mishra K.K., Srivastava S., Dwivedi P.P., Prasad K.N. and Ayyagari, A. (2002a). ureC PCR of cagA gene-based diagnosis of Helicobacter pylori infection and detection gastric biopsies. Ind. J. Pathol. Microbiol.45, 31–38.
Mishra K.K., Srivastava S., Dwivedi P.P., Prasad K.N. and Ayyagari, A. (2002b).Genotype of Helicobacter pylori isolated from various acid peptic diseases in and around Lucknow.Curr Sci.83, 749–755.
Mishra K.K., Srivastava S., Garg A. and Ayyagari A. (2006).Antibiotic Susceptibility of Helicobacter pylori Clinical Isolates: Comparative Evaluation of Disk-Diffusion and E-Test Methods. Curr. Microbiol.53, 329–334.
Prabhu Y.T. and Rao K.V. (2015). Synthesis of Fe3O4 Nanoparticles and its Antibacterial Application. Int. Nano. Lett.5, 85–92.
Rezaei-Zarchi S., Javed A., Ghani M.J., Soufian S., Firouzabadi F.B., Moghaddam A.B. and Mirjalili S.H. (2010). Comparative study of antimicrobial activities of TiO2 and CdO nanoparticles against the pathogenic strain of Escherichia coli. Iran J. Pathol.5, 83–89.
Shanmugaiaha V., Harikrishnana H., Al-Harbib S.N., Shineb K., Khaled J.M. and Balasubramaniance N. (2015).Facile synthesis of silver nanoparticles using Streptomyces sp. vsmgt1014 and their antimicrobial efficiency. Dig. J. Nanomater. Biostruct. 10, 179-187.
Sharma P.K. and Bhandari R. (2006). High-light-induced Changes on photosynthesis, pigments, sugars, lipids and Antioxidants Enzymes in fresh water (Nostoc Spongiaforme) and marine (Phormidium corium) Cyanobacteria. J.Photochem. Photobio.82, 702-710.
Slonczewski L., John L. and John W.F. (2009).Microbiology:  An Evolving Science. 2nd Ed. New York: W.W. Norton &Company, Inc., 141-685.
Taylor E.N. and Webster T.J. (2009). The use of superparamagnetic nanoparticles for prosthetic biofilm prevention. Int. J. Nanomedicine. 4,145–152.
Thamphiwatana, S. (2014). Antimicrobial Nanotherapeutics Against Helicobacter pylori Infection. Ph.D. thesis, Nanoengineering, University of California, San Diego.Publication Number: AAT 3639270; ISBN: 9781321235760; Source: Dissertation Abstracts International, Volume: 76-02(E), Section: B.; 168 p.1-2.
Thomas R., Viswan A., Mathew J. and Radhakrishnan E.K. (2012).Evaluation of Antibacterial Activity of Silver Nanoparticles Synthesized by a Novel Strain of Marine Pseudomonas sp. Nano. Biomed. Eng.4,139-143.
Van der Hulst R.W.M, Verheul S.B., Weel J.F.L., Gerrits Y., and Tenkate F.J.W., Dankert J. and Tytgat G.N.J. (1996). Effect of Specimen Collection Techniques, Transport Media, and Incubation of Cultures on the Detection rate of Helicobacter pylori. Eur. J. Clin. Microbiol. Infect. Dis.15:211–215.
Wiogo H.T.R., Lim M., Bulmus V., Yun J. and Amal R. (2011). Stabilization of magnetic iron oxide nanoparticles in biological media by fetal bovine serum (FBS). Langmuir.27:843–850.
Ying E. and Hwang H-M. (2010).In vitro evaluation of the cytotoxicity of iron oxide nanoparticles with different coatings and different sizes in A3 human T lymphocytes. Sci.Total Environ.408:4475–4481.
Zhang H. and Chen G. (2009).Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol-gel method. Environ. Sci. Technol.43: 2905–2910.