Safe technological trend towards the production of bioethanol from algal biomass grown on rice straw

Document Type : Original Article

Authors

1 Botany and Microbiology Department, Faculty of science, Al-Azhar University, Cairo, Egypt.

2 Botany and Microbiology Department, Faculty of science, Zagazig University, Zagazig, Egypt.

3 Egyptian Ministry of Environment, Environmental Affairs Agency, Cairo, Egypt.

Abstract

As a result of rapid growth in the population and manufacturing, the demand for ethanol is increasing continuously in worldwide. Because, biofuels produced from first and second-generation became unable to meet the international demand of bioethanol because of their needed value for food and feed. So, algae are among the most important sources of potential biofuels in the future of renewable energy because of accumulating high cellulose and also algae are distributed widely in the natural environment. This paper shows the ability of algae for bioethanol production, by pretreatment, hydrolysis, and fermentation of algal biomass. Two types of algae, Chlorella vulgaris and Arthrospira platensis were cultured under pre-treated rice straw with advantages as crop residues, a low-cost and carbon-rich source for algal cultivation. The chemical hydrolysates of rice straw (RS) were used for heterotrophic cultivation of Chlorella vulgaris and Arthrospira platensis for bioethanol production. Algal biomasses of the two microalgae were treated chemically with 4% H2SO4 at 121°C in autoclave for 90 min, followed by biological treatment with Bacillus subtilis for 72 hours at 30°C and pH 4.5 to increase the reducing sugars production. The fermentation by Saccharomyces cerevisiae for 72 hours and distillation of Chlorella vulgaris and Arthrospira platensis solutions were resulted in ethanol productivity of 8.7% and 2.5 % respectively after 24 hours at 30°C and pH 4.5.

Keywords


Agwa, O.K., Ibe, S.N. and Abu, G.O. (2012). Economically Effective Potential of Chlorella sp. for Biomass and Lipid Production. Journal of Microbiology Biotechnology Resource, 2, 34-45.
Al-Lwayzy, H.S., Yusaf, T. and Al-Juboori, R.A. (2014). Biofuel from Fresh Water Microalgae Chlorella vulgaris [FWM-CV] for Diesel Engines. Energies, 7, 1829-1951.
Anwar, Z., Gulfraz, M., Asad, M.J., Imran, M., Akram, Z., Mehmood, S., Rehman, A., Anwar, P. and Sadiq, A. (2012). Bioethanol productions from rice polish by optimization of dilute acid pretreatment and enzymatic hydrolysis. African Journal of Biotechnology, 11,992-998.
 
Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. (1994). Current Protocols in Molecular Biology. Current Protocols Brooklyn, New York. Dev 8, 1726– 1737.
 
Brennan, L. and Owende, P. (2010). Biofuels from Microalgae—A Review of Technologies for Production, Processing and Extractions of Biofuels and Co-Products. Renewable Sustainable Energy Revision, 14, 557-577.
Castro, Y.A., Ellis, J.T., Miller, C.D., Sims, R.C. (2015). Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation. Applied Energy 140, 14–19.
Ceron Garcıa, M.C., Fernandez Sevilla, J.M., Acien Fernandez, F.G., Molina Grima, G. and Garcıa Camacho, F. 2000. Mixotrophic Growth of Phaeodactylum tricornutum on Glycerol: Growth Rate and Fatty Acid Profile. Journal of Applied Phycology, 12, 239-248.
Chen, F., Zhang, Y. and Guo, S. (1996). Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnology Letters, 18(5), 603-608.
Choi, W.Y., Han, J.G., Lee, C.G., Song, C.H., Kim, J.S., Seo, Y.C., Lee, S.E., Jung, K.H., Kang, D.H., Heo, S.J., Cho, J.S. and Lee, H.Y. (2012). Bioethanol production from Ulva pertusa Kjellman by high-temperature liquefaction. Chemical and Biochemical Engineering Quarterly; 26(1):15–21.
Choi, S.P., Nguyen, M.T. and Sim, S.J. (2010). Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresource Technology, 101(14):5330–5336.
Chojnacka, K. and Noworyta, A. (2004). Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microb. Technol. 34, 461–465.
Darzins, A., Pienkos, P. and Edye, L. (2010). Current status and potential for algal biofuels production - a report to IEA Bioenergy Task 39, Report T39-T2.
Dhull, N., Gupta, K. and Kumar, S. (2014). Heterotrophic and Mixotrophic Cultivation of Chlorella pyrenoidosa and the Enzymatic Hydrolysis of Its Biomass for the Synthesis of Third Generation Bioethanol. Peer Journal 2: e483v1.
Dubois, M., Giller, K.A., Hamilton, J.K., Roberts, P.A. and Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28, 350-356.
Elsayed B. Belal, Mona A. Farid and A. A. Abo-Shosha. (2015). Int.J.Curr.Microbiol.App.Sci, 4(7), 511-524.
El-Sheekh, M.M., Gharieb, M.M., El-Sabbagh, S.M. and Hamza, W.T. (2014). Antimicrobial Efficacy of Some Marine Macroalgae of Red Sea. International Journal of Microbiology and Immunology Research, 3, 21-28.
Eshaq, F.S., Ali, M.N. and Mohd, M.K. (2011). Production of bioethanol from next generation feed-stock alga Spirogyra species. International Journal of Engineering, Science and Technology, 3(2), 1749–1755.
Ferrel, J and Sarisky-Reed, V. (2010). National algal biofuels technology roadmap. US Department of Energy. Office of Energy and Renewable Energy, (202)586-5340.
Sibi, G. (2015). Low Cost Carbon and Nitrogen Sources for Higher Microalgal Biomass and Lipid Production Using Agricultural Wastes. Journal of Environmental Science and Technology 8 (3): 113-121.
Geun Goo, B., Baek, G., Jin Choi, D., Il Park, Y., Synytsya, A., Bleha, R., Ho Seong, D., Lee, C-G. and Kweon Park, J. (2013). Characterization of a renewable extracellular polysaccharide from defatted microalgae Dunaliella tertiolecta. Bioresource Technology, 129, 343–350.
Gouveia, L. and Oliveira, A.C. (2009). Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology and Biotechnology, 36(2):269–274.
Haipeng Guo, Houming Chen , Lu Fan, Andrew Linklater, Bingsong Zheng, Dean Jiang and Wensheng Qin. (2017). Enzymes produced by biomass-degrading bacteria can efficiently hydrolyze algal cell walls and facilitate lipid extraction. Journals & Books, 109, 195-201.
Hammel, K. E., Kapich, A. N., Jensen Jr., K. A. and Ryan, Z. C. (2002). Reactive oxygen species as agents of wood decay by fungi, Enzyme Microb. Technol. 30(4), 445453.
Harel, A. (2009). Noritech Seaweed Biotechnologies Ltd, Algae World Conference. Rotterdam, The Netherlands, 23: 44–53.
Harun, R. and Danquah, M.K. (2011). Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochemistry, 46, 304–309.
Harun, R., Jason, W.S.Y., Cherrington, T. and Danquah, M.K. (2011). Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Applied Energy, 88(10):3464–3467.
Hernandez, D., Riano, B., Coca, M. and Garcia-Gonzalez, M.C. 2015. Saccharification of Carbohydrates in Microalgal Biomass by Physical, Chemical and Enzymatic Pretreatments as a Previous Step for Bioethanol Production. Chemical Engineering Journal, 262, 939-945.
Ho, S.H., Chen, C.Y. and Chang, J.S. (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour. Technol., 113: 244-252.
Ho, S-H., Li, P-J., Liu, C-C. and Chang, J-S. (2013a). Bioprocess development on microalgae-based CO2 fixation and bioethanol production using Scenedesmus obliquus CNW-N. Bioresource Technology, 145, 142–149.
Ho, S-H., Huang, S-W., Chen, C-Y., Hasunuma, T., Kondo, A. and Chang, J-S. (2013b). Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresource Technology, 135, 191–198.
Hsueh, H.T., Chu, H. and Yu S.T. (2007). A batch study on the biofixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae. Chemosphere, 66, 878–886.
Itelima, J., Ogbonna, A., Pandukur, S., Egbere, J. and Salami, A. (2013). Simultaneous Saccharification and Fermentation of Corn-Cobs to Bioethanol by Co-Culture of Aspergillus niger and Saccharomyces cerevisiae. International Journal of Environmental Science development, 4, 329-342.
Karimi, K., Emtiazi, G. and Taherzadeh, M.J. (2006). Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme and Microbial Technology, 40,138–144.
 
Karin Walter. (2009). INFLUENCE OF ACID HYDROGEN PEROXIDE TREATMENT ON REFINING ENERGY AND TMP PROPERTIES. Sundsvall, Sundsvall, Sweden, ISSN 16528948.
 
Kexun, Li, Shun Liu and Xianhua Liu. (2014). An overview of algae bioethanol production, International Journal of Energy Research. DOI: 10.1002/er.3164.
 
Krystian Miazek , Claire Remacle, Aurore Richel and Dorothee Goffin. 2014. Effect of Lignocellulose Related Compounds on Microalgae Growth and Product Biosynthesis. Energies, 7, 4446-4481.
Kumar, P., Barrett, D.M., Delwiche, M.J. and Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research; 48(8):3713–3729.
Laurens, L. M. L., Nagle, N., Davis, R., Sweeney, N., Van Wychen, S., Lowell A. and Pienkos., P. T. (2015). Acid-catalyzed algal biomass pretreatment for integrated lipid and carbohydrate-based biofuels production. Green Chem., 17, 1145.
Lam, M.K. and Lee, K.T. (2012). Microalgae Biofuels: A Critical Review of Issues, Problems and the Way Forward. Biotechnology Advances, 30, 673-690.
Lee, C.G., Choi, W.Y., Kang, D.H. and Lee, H.Y. (2014). Simultaneous Production of Biodiesel and Bioethanol through Mixotrophic Cultivation of Chlorella sp. Indian Journal of Geo -Marine Science, 43, 519 528.
Lee, S., Oh, Y., Kim, D., Kwon, D., Lee, C., Lee, J. (2011). Converting carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli strains. Applied Biochemistry and Biotechnology; 164(6):878–888.
Long Khama, Yves Le Bigot, Michel Delmas and Gérard Avignon. (2005). Delignification of wheat straw using a mixture of carboxylic acids and peroxoacids. Industrial Crops and Products, 21: 9–15.
Lu, S., Wang, J., Niu, Y., Yang, J., Zhou, J. and Yuan, Y. (2012). Metabolic profiling reveals growth related FAME productivity and quality of Chlorella sorokiniana with different inoculum sizes. Biotechnology and Bioengineering, 109, 1651–1662.
Mandels, M., Parrish, F.W. and Reese, E.T. (1962). Sophorose as an inducer of cellulase in Trichoderma reesei. Journal of Bacteriology., 83,400–408.
Marrez, D.A.; Naguib, M.M.; Sultan, Y.Y.; Daw, Z.Y.; Higazy, A.M. 2013. Impact of Culturing Media on Biomass Production and Pigments Content of Spirulina platensis. Int. J. Adv. Res., 1, 951–961.
 
Matthew, J. Scholz, Mark R. Riley and Joel, L. Cuello. (2013). Acid hydrolysis and fermentation of microalgal starches to ethanol by the yeast Saccharomyces cerevisiae. Biomass and Bioenergy, 48, 59-65.
Miao, X., Wu, Q. and Yang, C. (2004). Fast Pyrolysis of Microalgae to Produce Renewable Fuels. Journal of Analytical and Applied Pyrolysis, 71, 855-863. https://doi.org/10.1016/j.jaap.2003.11.004
Miranda, J.R., Passarinho, P.C., Gouveia, L. (2012a). Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production. Bioenergy and Biofuels,96, 555–564.
Miranda, J.R., Passarinho, P.C. and Gouveia, L. (2012b). Pretreatment Optimization of Scenedesmus obliquus Microalga for Bioethanol Production. Bioresource Technology, 104, 342-348. https://doi.org/10.1016/j.biortech.2011.10.059
Mukhopadhyay, S. and Nandi, B. (1998). Optimization of cellulase produce by T. reesei ATCC 26921 using a simplified medium on water hyacinth biomass. J Sci Ind Res., 58,107-111.
Nguyen, M.T., Choi, S.P., Lee, J., Lee, J.H. and Sim, S.J. (2009). Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Journal of Microbiology and Biotechnology, 19, 161–166.
Nguyen, T.H.M. (2012). Bioethanol production from marine algae biomass: prospect and troubles, Journal of Vietnamese Environment, 3(1), 25-9.
Nikzad, M., Movagharnejad, K., Najafpour, G.D., Talebnia, F. (2012). Comparative Studies on the Effect of Pretreatment of Rice Husk on Enzymatic Digestibility and Bioethanol Production IJE TRANSACTIONS B: Applications., 26,455-464.
Oyeleke, S.B. and Jibrin, N.M. (2009). Production of Bioethanol from Guinea Cornhusk and Millet Husk. African Journal of Microbiology Research, 3, 147-152.
Packer, M. (2009). Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy.Energy Policy, 37, (9), 3428-3437.
Panneerselvam, T. and Elavarasi, S. (2015). Int.J.Curr.Microbiol.App.Sci, 4(2), 543-552.
Penglin Li, XiaolingMiao, Rongxiu Li and Jianjiang Zhong. (2011). In Situ Biodiesel Production fromFast-Growing and High Oil Content Chlorella pyrenoidosa in Rice Straw Hydrolysate. Journal of Biomedicine and Biotechnology, 10,141207- 141215.
Rabah, A.B., Oyeleke, S.B., Manga, S.B. and Hassan, L.G. (2011). Utilization of Millet and Guinea Corn Husk for Bioethanol Production. African Journal of Microbiology Research, 5, 5721-5724.
Ragaa A. Hamouda, Shaimaa, A. Sheri, Mohammed M. Ghareeb. (2017). Bioethanol Production by Various Hydrolysis and Fermentation Processes with Micro and Macro Green Algae. Waste Biomass Valor, 10,9936-9943
Raoof, B. (2006). Formulation of a low-cost medium for mass production of Spirulina. Biomass and Bioenergy, 30, (6), 537-542.
Ren, H. Y., Liu, B. F., Kong, F., Zhao, L., Xie, G. J. and Ren, N. Q. (2014). Enhanced lipid accumulation of green microalga Scenedesmus sp. by metal ions and EDTA addition. Bioresource Technology, 169, 763-767.
Rigano, V.D.M., Vona, V., Esporto, S., Carillo, P., Carfagna, S. and Rigano, C. (1998). The Physiological Significance of Light and Dark Ammonium Metabolism in Chlorella sorokiniana. Photochemistry, 47, 177-181.
Rodolfi, L., Zitelli, G.C., Bassi, N., Padovani, G., Biondi, N. and Bionini, G. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photo-bioreactor. Biotechnol Bioeng , 102,100–12.
Rouf Ahmad Dara, Mehak Arorab and Urmila Gupta Phutela. (2019). Optimization of cultural factors of newly isolated microalga Spirulina subsalsa and its co-digestion with paddy straw for enhanced biogas production. Bioresource Technology Reports, 5,185–198.
Ross, A.B., Jones, J.M., Kubacki, M.L. and Bridgeman, T. (2008). Classification of macroalgae as fuel and its thermochemical behaviour. Bioresource Technology; 99(14), 6494–6504. doi: 10.1016/j.biortech.2007.11.036.
Schenk, P.M., Thomas-Hall, S.R., Stephens, E., Marx, U.C., Mussgnug, J.H., Posten, C., Kruse, O. and Hankamer, B. (2008). Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Research;1(1), 20–43. doi:10.1007/s12155-008-9008-8.
Sharma, N., Kalra, K.L., Oberoi, H.S. and Bansal, S. (2007). Optimization of fermentation parameters for production of ethanol from kinnow waste and banana peels by simultaneous saccharification and fermentation. Indian J. Microbiol., 47,310–316.
Shimpei Aikawa,ab Ancy Joseph, Ryosuke Yamada, Yoshihiro Izumi, Takahiro Yamagishi, Fumio Matsuda, Hiroshi Kawai, Jo-Shu Chang, Tomohisa Hasunumabch and Akihiko Kondo. (2013). Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes.Energy & Environmental Science. 6, 1844–1849.
Singh, A., Nigam, P.S. and Murphy, J.D. (2011a). Renewable fuels from algae: an answer to debatable land-based fuels. Bioresource Technology; 102(1):10–16.
Singh, A., Olsen, S.I. and Nigam, P.S. (2011b). Aviable technology to generate third-generation biofuel. Journal of Chemical Technology and Biotechnology; 86(11):1349–1353. doi:10.1002/Jctb.2666.
 
Talebnia, F., Karakashev, D. and Angelidaki, I. (2010). Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresource Technology; 101(13):4744–4753. doi:10.1016/j. biortech.2009.11.080.
U.S. Department of Energy Biomass Program. (2009). http://www.eere.energy.gov/biomass/pdfs/biomass.deep.dive.pir.pdf.
Van Maris, A.J, Abbott, D.A, Bellissimi, E., van den Brink, J., Kuyper, M., Luttik, M.A., Wisselink, H.W., Scheffers, W.A., van Dijken, J.P. and Pronk, J.T. (2006). Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae. Antonie Van Leeuwenhoek, 90, 391–418.
Vasudevan V, Stratton RW, Pearlson MN, Jersey GR, Beyene AG, Weissman JC, Rubino M and Hileman JI. (2012). Environmental performance of algal biofuel technology options. Environmental Science and Technology; 46(4):2451–2459. doi:10.1021/es2026399.
Wei-ChoHuang and I-ChingTang. (2007). Chapter 8 - Bacterial and Yeast Cultures – Process Characteristics, Products, and Applications. New Technologies and Applications, 185-223.
Wolfe, D.W., Schwartz, M.D., Lakso, A.N., Otsuki, Y., Pool, R.M. and Shaulis, N.G. (2005). Climate Change and Shifts in Spring Phenology of Three Horticultural Woody Perennials in Northeastern USA. International Journal of Biometerology. 49, 303-309. https://doi.org/10.1007/s00484-004-0248-9
Xu, H., Miao, X. and Wu, Q. (2006). High Quality Biodiesel Production from a Microalga Chlorella Protothecoides by Heterotrophic Growth in Fermenters. J. Biotechnol., 126, 499–507.
Yao, C-H, Ai, J-N, Cao, X-P, Xue, S. (2013). Salinity manipulation as an effective method for enhanced starch production in the marine microalga Tetraselmis subcordiformis. Bioresource Technology 146, 663–671.
Zarrouk, C. (1966). Contribution à L’étude D’une Cyanophycée: Influence de Divers Facteurs Physiques et Chimiques sur la Croissance et la Photosynthèse de Spirulina maxima (Setch et Gardner) Geitler. Ph.D. Thesis, Faculté des Sciences de l’Université de Paris, Paris, France.
Zhou, N., Zhang, Y., Gong, X., Wang, Q. and Ma, Y. (2012). Ionic liquids-based hydrolysis of Chlorella biomass for fermentable sugars. Bioresource Technology, 118, 512–517.
Zhu, L.D., Hiltunen, E., Antila, E., Zhong, J.J., Yuang, Z.H. and Wang, Z.M. (2014). Microalgal Biofuel: Flexible Bioenergies for Sustainable Development. Renewable and Sustainable Energy Reviews, 30, 1035.