Bioactive constituents of three algal species extracts and their anticancer activity against human cancer cell lines

Document Type : Original Article

Authors

1 Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt

2 Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt

Abstract

This study was designed to identify the bioactive constituents of the red alga Gracilaria dendroides and one green alga Chlorella vulgaris and Microcystis sp. (cyanobacteria) by GC /Mass and HPLC analysis and assay the cytotoxic activity of the methanolic extract from the three species against three types of human cancer cell lines (liver HEPG-2, colon and breast MCV-7). The research was performed as an in vitro study. The effect of extract on proliferation of cell lines was measured by Methyl thiazolyl tetra zolium  (MTT) colorimetric method. The results showed that the compounds identified by GC-MS were 19 compounds in G. dendroides, 11 compounds in Chlorella and 12 compounds in Microcystis,. The most abundant compounds were fatty acids, methyl esters and terpenoids. HPLC analysis identified 4 compounds in Gracilaria and 6 compounds in Chlorella and Microcystis. Crude extract of Gracilaria had the strongest activity on HepG-2 cell lines with IC50 value 15.46 μg/ml. Concerning MCF-7 cell lines, the most potent crude extract was the Chlorella vulgaris (IC50 value of 15.53 μg/ml). On the other hand, evaluation the cytotoxic activity for the three algae species extracts against epithelial colorectal adenocarcinoma cells (CaCO-2) showed higher activity for Chlorella vulgaris with IC50 = 14.63 μg/ml. Accordingly, we can say that Chlorella had the strongest activity on  MCF-7 and  (CaCO-2) cell lines while HepG-2 cell lines most affected by Gracilaria extract.

Keywords


Ahmed, W.A., El-Semary, N.A., Abd  El-Hameed,  O. M.,  El  Tawill,  G. and Ibrahim,  D.M. (2017). Bioactivity  and  Cytotoxic  Effect  of  Cyanobacterial  Toxin  Against  Hepatocellular  Carcinoma.  J. Cancer Sci Ther., 9:505-511. 
Aleem, A. A. (1993). Marine algae of Alexandria, Egypt.EEAA publication,154.
Apryshko, G.N., Ivanov, V.N., Milchakova, N.A. and Nekhoroshev, M.V. (2005). Mediterranean and Black Sea organisms and algae from mariculture as sources of antitumor drugs. J.Exp.Oncol.,27(2): 94-95.
Balaji, M., Thamilvanan, D., Chidambara, S .V. and Balakumar, B. S. (2017). Anticancer, antioxidant activity and GC-MS analysis of selected micro algal members of chlorophyceae. Int. J. Pharm. Sci. Res., 13: 3302-3314.
Élica, A. C. G., Teresinha, G. da Silva, Jaciana S. A., Lurdiana, D. de Barros, Laura, M. P. and Antonio, E.G.S. (2013).Cytotoxic activity of marine algae against cancerous cells. Revista Brasil. Farmaco., 23 :668-673.
Gheda, S., El-Sheekh, M., Abou-ZeidA. (2018). In vitro anticancer activity of polysaccharide extracted from red alga Jania rubens against breast and colon cancer cell lines. Asian Pac J Trop Med., 11: 583-589.
Gu, L., Geders, T. W., Wang, B., Gerwick, W. H., Håkansson, K., Smith, J. L. and Sherman, D. H. (2007). "GNAT-Like Strategy for Polyketide Chain Initiation". Science. 318: 970–974.
Itoh, H., Noda, H., Amano, H., Zhuaug, C., Mizuno, T. and Ito, H. (1993). Antitumor activity and immunological properties of marine algal polysaccharides, especially fucoidan, prepared from Sargassum thunbergii of Phaeophyceae. Anticancer Res., 13(6A): 2045-52.
Kehr J. C., Picchi, D. G. and Dittmann, E. (2011). Natural product biosynthesis in cyanobacteria: a treasure trove of unique enzymes. Beilstein J .Org Chem.,7:1622–35.Kim, A.D., Lee, Y., Kang, S.H., Kim, G.Y., Kim, H.S. and Hyun, J.W. (2013). Cytotoxic effect of clerosterol isolated from Codium fragile on A2058 human melanoma cells.J. Mar. Drugs., 11:418–430.
Manilal, A., Sujith, S., Kiran, G.S., Selvin, J., Shakir, C., Gandhimathi, R. and Panikkar, M.V.N. (2009).Bio-potentials of seaweeds collected from Southwest coast of India. J. Mar. Sci. Technol., 17:67–73.
Matsubara, K., Xue, C., Zhao, X., Mori, M., Sugawara, T. and Hirata, T. (2005). Effects of middle molecular weight fucoidans on in vitro and ex vivo angiogenesis of endothelial cells. Int. J Mol Med.,15(4): 6959.
Michael, M., Herryawan, R., Eziwar, D., Sarah, E. and Tristan, R. (2014). Lipid analogues as potential drugs for the regulation of mitochondrial cell death.Br. J. Pharmacol., 171:2051–2066.
Ming-Chao, B.,  Richard, R.,  Ren-Yuan, Z.,   Steven, A. , Cormick, Mc.,   Song, E. and Dan-Ning, Hu. (2013). Zeaxanthin Induces Apoptosis in Human Uveal Melanoma Cells through Bcl-2 Family Proteins and Intrinsic Apoptosis Pathway.  Evid Based Complement Alternat Med., 2050-82
Mohd, S.M.Z., Roshani, O., Nurhasyimah, R., Mohamad, H. M., Sharida, M.D. and Ahmed, H.Y. (2012). Screening of anticancer activities of crude extracts of unicellular green algae (Chlorella vulgaris) and filamentous blue green algae (Spirulina platensis) on selected cancer cell lines. J. Acad. Univ. Tekn. MARA Negeri Sembilan., 2:38-42.
Ordog, V., Stirk, W.A., Lenobel, R., Bancirova, M,, Strand, M. and Van, S. J. (2004).Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. J .appl. phycol., 16:309-314.
Palozza, P., Torelli, C., Boninsegna, A., Simone, R., Catalano, A., Mele, M.C. and Picci, N. (2009). Growth-inhibitory effects of the astaxanthin-rich alga Haematococcus pluvialis in human colon cancer cells. Cancer Lett., 283:108–117
Prakash, B., Ashokkumar, L., Virgin, N. M.,  Miller, S. S., Kavitha, R. and Jegadeeshkumar,  D.  (2017).Evaluation of anticancer activity of chlorella vulgaris Against human breast adenocarcinoma cell line (MCF-7) .Int. J. Adv. Interdisciplinary Res.,4 : 1-3.
Prescott, G.W. (1982). Algae of the western Great Lakes area, with an illustrated key to the genera of desmids and freshwater diatoms. Otto Koeltz Science Publishers.
Rippka, R., Deruelles,  J., Waterbury,  J.B., Herdman, M. and Stanier, R.Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology., 111(1): 1-61.
Sheeja L, D. Lakshmi, S. B. and Parveen, K. S. (2016). Anticancer activity of phytol purified from Gracilaria edulis against human breast cancer cell line (MCF-7). Int J Curr Sci, 19(4): 36-46.
Van de Loosdrecht, A.A., Ossenkoppele, G.J., Beelen, R.H., Broekhoven, M.G., van Hooff, M.H., Dräger, A.M., Huijgens, P.C. and Langenhuijsen, M.M. (1994). Maturation-dependent susceptibility to monocyte-mediated cytotoxicity in acute myeloid leukemia. Leukemia., (8):1392-400.
Venkataraghavan, R., Jayashree, P. and Thiruchelvi, R. (2019).Gas Chromatography-mass spectrometry analysis of methanol extracts from marine red seaweed Gracilariacorticata. Pharmaco. J. ,11(3): 547-554.
Verdier, P. P., Lai, J.Y., Yoo, H.D., Jurong, M.B., Nagle, D. G., Nambu, M., White, J. D., Falck, J. R., Gerwick, W. H., Day, B. W. and Hamel, E. (1998). Structure-Activity Analysis of the Interaction of Curacin A, the Potent Colchicine Site Antimitotic Agent, with Tubulin and Effects of Analogs on the Growth of MCF-7 Breast Cancer Cells. Molec. Pharm.53 (1): 62–76
Xu, H., Yao, L., Sung, H. and Wu, L. (2009): Chemical composition and antitumor activity of different polysaccharides from the roots Actinidiaeriantha. Carb. Polym.,78:316-322.
Yosie, A., Desy, F.S., Tee, C. Y., Faizah, S. H., Gan, M. H., Siti, A. A., Christine, A. O., Abdul, M. A., Jalifah, L., Hiroe, K. and Habsah, M. (2016). Biological Activities of Isolated Compounds from Three Edible Malaysian Red Seaweeds, Gracilaria changii, G. manilaensis and Gracilaria sp. Natural Product Communications.,11 (8): 1117-1120
Yusof, Y.A., Saad, S.M., Makpol, S., Shamaan, N.A. and Ngah, W.Z. (2010).Hot water extract of Chlorella vulgaris induced DNA damage and apoptosis. Clinics, 65:1371–1377.
Zhang, Z.D., Liang, K., Li, K., Wang, G.Q., Zhang, K.W., Cai, L., Zhai, S.T. and Chou, K.C. (2017). Chlorella vulgaris Induces Apoptosis of Human Non-Small Cell Lung Carcinoma (NSCLC) Cells. Med. Chem., 13: 560–568.