Seasonal succession of biomass and microalgal communities in some agricultural drainage at Minia governorate, Egypt

Document Type : Original Article

Authors

1 Researcher Assistance, Environmental Department, SWERI, ARC

2 Biology Department, Faculty of Science, Taif University, 21974, Taif, KSA

3 Botany & Microbiology Department, Faculty of Science, Assiut University, Egypt

4 Senior Researcher, Environmental Department, SWERI, ARC

5 Minia University, Faculty of Science, Botany Department

Abstract

The microalgal communities and related physico-chemical properties of some agricultural drainage at Minia, Egypt as well as, the qualitative and quantitative algal composition were seasonally studied. In total, 151 algal species were identified during the study. Bacillariophyceae was the most dominant algal group during the four seasons, followed by Chlorophyceae, Cyanophyceae, Euglenophyceae, Charophyceae and Dinophyceae. Among Bacillariophyceae, Cyclotella striata was the most abundant species, Scenedesmus quadricauda from Chlorophyceae, Oscillatoria limosa from Cyanophyceae, Euglena proxima from Euglenophyceae, Staurastrum sp. from Charophyceae and Peridinium lomnicki from Dinophyceae. The maximum algal biomass was recorded at site 1 in autumn (827.7µg/L); and the minimum value was recorded at site 4 in winter (26.7µg/L). Seven diversity indices were obtained that comprise Margalef's Index, Shannon-Wiener Diversity, Pielou’s Evenness, Fisher’s Index, Simpson Dominance Index, Simpson's Diversity Index and Berger-Parker Index. Water temperature, total alkalinity, chloride and phosphate were the most effective parameters affecting structure of microalgae during the different seasons.

Keywords


Abdel-Satar, A.M. and Elewa, A. (2001). Water quality and environmental assessments of the River Nile at Rosette branch. Proceedings of the 2nd Conference and Exhibition for Life and Environment, Apr. 3-5, Alexandria, Egypt, pp: 136-
Abdo, M. H.  (2013).Physico-chemical  studies  on  the  pollutants  effect  in  the aquatic  environment  of  Rosetta  branch  River  Nile,  Egypt. Life Science Journal, 10 (4): 493-501.
Aboellil, A. and Aboellil, A.H. (2012). Colonization Abilities of Microflora to Attach Aquatic Plants. Global Journal of Science Frontier Research, Biological Sciences, 12(4):21-27.
Abou-Aisha, K. M., Shabana, E. F., El-Abyad, M. S., Kobbia, I. A. and Schanz, F. (1997). Seasonal changes in Cystoseira myrica and phosphorus input at two sites of the Red Sea Egyptian Coast. Water, Air, and Soil Pollution, 93(1-4): 199-211.
Adam, A. S., Hifney, A., Fawzy, M. and Al-badaani, A. (2017).Seasonal biodiversity and ecological studies on the epiphytic microalgae communities in polluted and unpolluted aquatic ecosystem at Assiut, Egypt. European Journal of Ecology, 3 (2), 92-106.
Albay, M.  and Akçaalan, R. (2003). Comparative study of periphyton colonization on common reed (Phragmitesaustralis) and artificial substrate in a shallow lake, Manyas, Turkey. Hydrobiologia, 506(1-3): 531-540.
Ali, E. M., Dessouki, S. A., Soliman A. R. and Shenawy A. S. (2014).Characterization of Chemical Water Quality in the Nile River, Egypt, International Journal of pure and applied bioscience, 2 (3): 35-53.
Allen, S. I. and Coon, H. O. (1960).observations on the effect of exercise on blood ammonia concentration in man. Yale Journal of Biology and Medicine, 33: 133-144.
Alnagaawy, A. M., Sherif,  M. H., Mohammed, G. A. and Shehata, A. S. (2018).Impact of industrial pollutants on some water quality parameters of Edku, Mariout lakes and the Nile River. International Journal of EnvironmentalResearch and Public Health7(1): 1-15.
Al-Sheikh, H. and Fathi, A. A. (2010). Ecological Studies on Al-Asfar Lake, Al-Hassa, Saudi Arabia, with Special References to the Sediment, Research Journal of environmental science, 4(1): 13-22.
Ariyadej, C., Tansaku, R., Tansakul, P. and Angsupanich, S. (2004).Phytoplankton diversity and its relationships to the physico-chemical environment in the Banglng Reservoir, Yala. Songklanakarin. Journal of Science and Technology26(5): 595-607.
Anderson, M. J., Gorley, R. N. and Clarke, K. R. (2008).PERMANOVA+ for PRIMER: guide to software and statistical methods.
Bellinger, G. E. and Sigee, D. C. (2010).Freshwater Algae: Identification and Use as Bioindicators. Hoboken, NJ: John Wiley & Sons, Ltd.
Berger, W. H. and Parker, F. L. (1970).Diversity of planktonic foraminifer in deep sea sediments. Science, 168: 1345-1347.
Brettum, P. and Andersen, T. (2005). The use of phytoplankton as indicators of water quality. NIVA-report SNO. 4818-2004: 197 pp.
Codd, G. A., Bell, S. G. and Brooks, W. P. (1989).Cyanobacterial toxins in water. Water Science Technology Journal, 21: 1-13.
Costica, M. (2009).Contribution to knowledge of Euglenophyta in the Bahlui river basin. Analele Stiintifice ale Universitatii” Al. I. Cuza” din Iasi, 55: 163-169.
Demir, A. N., Fakioğlu, Ö. and Dural, B. (2014).Phytoplankton functional groups provide a quality assessment method by the Q assemblage index in Lake Mogan (Turkey). Turkish Journal of Botany, 38: 169-179.
Dere, Ş., Karacaoğlu, D. and Dalkiran, N. (2002).A study on the epiphytic algae of the Nilüfer Stream (Bursa). Turkish Journal of Botany, 26(4): 219-234.
 
Deutsche EinhiestsverfahrenzurWasser, Abivasser und Schlamm. Untersuchung. (1960).Verlag Chemic, Cambh, D9-D10 Weinhern, Bergstr, W. Germany. [c.f. Abd El-Khalek, A.B. (1990). Microbiological studies on sausage. M. Sc. Thesis, Fac. of Agric., Ain Shams Univ., Egypt].
Dewis, J. and Freitas, F. (1970).Physical and chemical methods of soil and water analysis, (10) pp. 275.
Durrieu, C., Guedri, H., Fremion, F. and Volatier, L. (2011).Unicellular algaeused  as  biosensors  for  chemical  detection  in  the  Mediterranean  lagoon  andcoastal waters. Research Journal of Microbiology, 162: 908-914.
El-Din, S. N., Shaltout, N. A., Nassar, M. Z. and Soliman, A. (2015).Ecological studies of epiphytic microalgae and epiphytic zooplankton on seaweeds of the Eastern Harbor, Alexandria, Egypt. American Journal of Environmental Sciences, 11(6): 450.‏
Elewa, A. A., Shehata, M. B., Mohamed, L. F., Badr, M. H. and Abdel Aziz, G. S. (2009).Water Quality Characteristics of the River Nile at Delta Barrage with Special Reference to Rosetta Branch. Global Journal of Environmental Research, 3(1): 1-6.
Elewa, A. S. (1988).The influence of oxidation-reduction potential on the water environment of Aswan high dam reservoir. International Journal of Water Resources Development, 4(3): 184-190.
El-Gamal, A. and Shafik, Y. (1985).Monitoring of pollutants discharging to the River Nile and their effect on river water quality. Water Quality Bulletin, WHO, Environmental Canada, 10(3): 111-115 and page 161.
El-Otify, A. M. (2015).Water Quality Assessment of Irrigation and Drainage Systems on the basis of Phytoplankton analysis. The Egyptian Society for Environmental Sciences, 32: 191-202.
El-Sadek, A., Oorts, K., Sammels, L., Timmerman, A., Radwan, M. and Feyen, J. (2003).Comparative study of two nitrogen models. Irrigation and Drainage Engineering, 1 (129): 44-52.
Fathi, A. A. and Flower, R.J. (2005). Water Quality and phytoplankton communities in Lake Qarun (Egypt), Aquatic Science, 67 (4):350-362.
Fathi, A.A, Abdelzaher, H.M., Flower, R., Ramdani, M. and Kraiem, M. (2001).  Phytoplankton communities in North African wetland lakes: The CASSARINA Project. Aquatic Ecology, 35: 303-318
Fathi, A.A.,  Al-Fredan, M.A. and  Youssef, A.M. (2009). Water Quality and Phytoplankton Communities in Lake Al-Asfar, Al-Hassa, Saudi Arabia., Research Journal of Environmental Science, 3(5):505-513.
Fathi, A.A., Azooz, M. M. and Al-Fredan, M.A. (2013). Hydrobiological investigation of Al-Asfar Lake, Al-Hassa, Saudi Arabia. El-Minia Science Bulletin, 24 (1):21-36.
Fawzy, M. A. (2016). Spatial distribution of epiphytic algae growing on the aquatic macrophytes phragmites australis and echinochloa stagnina at Assiut-Egypt.  Minia Science Bulletin, Botany section27(2): 1-26.
Field, C. B., Behrenfeld, M. J., Randerson, J. T. and Falkowski, P. (2007).Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281(5374): 237-240.
Fisher, R. A., Corbert, A. S. and Williams, C. B. (1943).The relation between the  numbers  of  species  and  the  number  of  individuals  in  a  randomsample of an animal population. Journal of Animal Ecology. 12: 42-58.
Food and Agriculture Organization of the United Nations Rome (FAO) (1985). Mid-decade review of food and agriculture. 19.
Gadag, S. S., Kodashettar, M. S., Birasal, N. R. and Sambrani, M. I. (2005).A checklist of the microphytes and macrophytes in and around Heggerilake (Haveri district). Proc. State level UGC sponsored seminar on biodiversity and its conservation held at KLE society’s Gudleppa Hallikeri College, Haveri, p.91.
Ganf, G. G. (1974).Diurnal mixing and the vertical distribution of phytoplankton in a shallow equatorial lake (Lake George, Uganda). The Journal of Ecology, 611-629.
García, V. S., Cantoral-Uriza, E. A., Alcántara, I. I. and Maidana, N. I. (2012).Epilithic diatoms (Bacillariophyceae) as indicators of water quality in the Upper Lerma River, Mexico. Hidrobiologica, 22(1): 16-27.
Gorelick, R. (2006). Combining richness and abundance into a single diversity index using matrix analogues of Shannon's and Simpson's indices. Ecography, 29: 525–530.
Graham, J. E., Graham, J. M. and Wilcox, L. (2009). Algae, 2nd Edn. Benjamin. Cummings. San Francisco. pp. 698.
Hassan, K. Y., Kutama, A. S. and Ibrahim, Y. (2010). Algal diversity in relation to physico-chemical parameters of three ponds in Kano metropolis, Nigeria. Bioscience Research Communications, 22 (6): 321-328
Hernández-Carmona, G., Riosmena-Rodríguez, R., Serviere-Zaragoza, E. and Ponce-Díaz, G. (2011). Effect of nutrient availability on understory algae during El Niño Southern Oscillation (ENSO) conditions in Central Pacific Baja California. Journal of Applied Phycology, 23: 635-642.
Jackson, M. L. (1958). Soil chemical Analysis. Constable. Ltd. Co., London.498.
Jackson, M. L. (1960). Soil chemical analysis. Constable and Co., London, pp, 261-262.
Khalil, M. A., Beltagy, E. A., Elshouny, W. A., Abo El-Naga, E. H., Elshenawy, M. A. and Kelany, M. S. (2014).Seasonal Bacteriological and Physico-Chemical Analysis of Lake Timsah, Ismailia, Egypt. Life Science Journal, 15: 9-17.
Kocatas, A. and Bilecik, N. (1992). Aegean Sea and Its Living Resources. T. C. Tarimve Köyisleri Bakanligi. Su ÜrünleriArastirma Enstitüsü Müdürlügü. Bodrum.Seri A. 7: 88 pp. (in Turkish).
Kormas, K. A., Nicolaidou, A. and Reizopoulou, S. (2006). Temporal variation of nutrients, chlorophyll a and particulate matter in three coastal lagoons of Amvrakikos gulf Ionian Sea, Greece. Marine  Ecology, 22: 201–213.
Kramer, K. and Lange-Bertalot, H. (1991). Süßwasserflora von Mitteleuropa, Band 2/4, Teil 4:  Achanataceae, KritischeErgänzungenzuNavicula (Lineolatae)  und  Gomphonema GesmatliteraturzeichnisTeil 1–4. Gustav Fischer Verlag, Stuttgart Jena, 437.
Kshirsagar, A. D., Ahire, M. L. and Gunale, V. R. (2012).Phytoplankton diversity related to Pollution from Mula River at Pune City. Terrestrial & Aquatic environmental Toxicology, 6(2): 136-142.
Kupferberg, S. (2003). Facilitation of periphyton production by tadpole grazing: functional differences between species. Freshwater Biology, 37: 427-439.
Larson, C. A. and Passy, S. I.  (2012). Taxonomic and functional composition of the algal benthos exhibits similar successional trends in response to nutrient supply and current velocity. FEMS Microbiology Ecology,80(2): 352-362.
Lashari, K. H., Korai, A. L., Sahato, G. A. and Kazi, T. G. (2009).Limnological studies of Keenjhar lake, district, Thatta, Sindh, Pakistan. Pakistan Journal of Analytical and Environmental Chemistry, 10(1-2): 39-47.
Laugaste, L. and Reunanen, M. (2005). The composition and density of epiphyton on some macrophyte species in the partly meromictic Lake Vervi. Hydrobiologia, 547: 137-150.
Lund, J. W. G. and Canter-Lund, H. (1995).Freshwater algae:  their microscopic world explored. BiopressItd. The Ochard Clanage Road Bristol BS3 2JX England, pp. 306.
Mackereth, F. J. H., Heron, J. and Talling, J. F. (1978).Water analysis: some revised methods for limnologists. Freshwater Biological Association, London. 121p. (Scientific Publications, 36).
Margalef, R. (1958). Temporal succession and spatial heterogeneity in phytoplankton. In: Perspectives in Marine biology. Buzzati-Traverso (Ed.). The University of California Press, Berkeley, 323-347.
Melo, A. S. (2008). O queganhamos ‘confundindo’ riqueza de espécies e equabilidadeem um índice de diversidade. Biota Neotropica, 8: 21-27.
Metzner, H., Rau, H. and Senger, H. (1965). Studies on the synchronizability of individual pigment-deficient mutants of Chlorella studies on synchronization of some pigment-deficient Chlorella mutants. Planta, 65(2): 186-194.
Muller, U. (1996). Production rates of epiphytic algae in eutrophic lake. Hydrobiologia, 330: 37-45.   
Pielou, E. C. (1975).Ecological Diversity. John Wiley and Sons, New York.
Pouličkowá , A., Duchosłav, M. and Doculil, M. (2004). Littoral diatom assemblages as bioindicators of lake trophic status: A case study from perialpine lakes in Austria. European Journal of Phycology, 39: 143-52.
Radwan, M., Willems, P. and Berlamont, J. (2004).Sensitivity and uncertainty analysis for river water quality modelingJournal of Hydroinformatics, 6(2): 83-99.
Rejagopal, T. T., Thangamani, A. and Archunan, G. (2010). Comparison of physicochemical paramerers and phytoplankton species diviresty of two perennial ponds in Sattur area, tamilnadu. Journal of Environmental Biology, 31(5): 787-794.
Sabae, S. Z.  and Abdel-Satar, A. M. (2001).Chemical and Bacteriological studies on El-Salam Canal, Egypt. J. Egyptian Academic Society Environmental studies Development, 2(1): 173-197.
Saha, S. B., Bhattacharya, S. B., and Choudhury, A. (2000). Diversity of phytoplankton of sewage pollution brackish water tidal ecosystems. Journal of Environmental Biology, 21 (1): 9-14.
Salman, J. M., Hadi, S. H. and Mutaer, A. A. (2013).Spatial and temporal distribution of phytoplankton and some related physical and chemical properties in Al–Abasia River (euphrates), Iraq. International Journal of Geology, Earth and Environmental Sciences, 3(3): 155-169.
Schwarzenbach, G. and Biedermann, W. (1948). Komplexone X. Erdalkalikomplexe von o,o'-Dioxyazofarbstoffen. Helvetica Chimica Acta, 31(3): 678-687.
Shannon, C. E. and Wiener, W. (1949).The mathematical theory of communication. Urbana, University of Illinois Press, 177 pp.
Sheen, R. T., Kahler, H. L., Ross, E. M., Betz, W. H. and Betz, L. D. (1935). Turbidimetric determination of sulfate in water. Industrial and Engineering Chemistry Analytical Edition, 7(4): 262-265.
Shehata, S. A., Sabah, A. and Aly, G. H. (1996). Algal communities and its relationship with the water quality of River Nile at Edfu, Egypt. Scientific Journal of Faculty of Science, Monoufia University, 10: 265-286.
Shehata, S. A., Ali, G. H. and Wahba, S. Z. (2008). Distribution pattern of Nile water algae with reference to its treatability in drinking water. Journal of Applied Science and research, 4(6): 722-730.
Simpson, E. H. (1949).Measurement of diversity. Nature, 163-688.
Smith, M. E. and Manoylov, K. M. (2013). Changes in Diatom Biodiversity in Lake Sinclair, Bald win County, Georgia, USA. Journal of Water Resource and Protection, 5: 732-742.
Song, Y. Z., Wang, J. Q. and Gao, Y. X. (2017). Effects of epiphytic algae on biomass and physiology of Myriophyllumspicatum L. with the increase of nitrogen and phosphorus availability in the water body. Environmental Science and Pollution Research, 24(10): 9548-9555.
Stevenson, J. and Pan, Y. (1999). Assessing ecological conditions in rivers and streams with diatoms, Applications to the environmental and earth science, Cambridge, UK. Cambridge University Press, 30: 11–40.
Sundbäck, K. and Snoeijs, P. (1991). Effects of nutrient enrichment on microalgal community composition in a coastal shallow water sediment system: an experimental study. Botanica Marina, 34: 341-358.
Takashi, A., Munira, S., Jagath, M. and Takeshi, F. (2004). The effect of epiphytic algae on the growth and production of Potamoget onperfoliatus L. in two light conditionsEnvironmental and Experimental Botany, 52(3): 225-38.
Tamot, S. and Sharma, P. (2006).Physico-chemical Status of Upper Lake (Bhopal, India) Water Quality with Special Reference to Phosphate and Nitrate Concentration and Their Impact on Lake Ecosystem. Asian Journal of Experimental Sciences, 20(1): 151-158.
Toma, J. J. (2011).Physical and chemical properties and algal composition of Derbendikhan lake, Sulaimania, Iraq. Current World Environment6(1): 17-27.
Toporowska, M., Pawlik-Skowrońska, B. and Wojtal, A. (2008). Epiphytic algae on StratiotesaloidesL., Potamogetonlucens L., Ceratophyllumdemersum L. and Chara spp. in a macrophyte-dominated lake. Oceanological and Hydrobiological Studies, 37(2): 51-63.
Tóth, V. R. (2013).The effect of periphyton on the light environment and production  of Potamogetonperfoliatus,  in  the  mesotrophic basin of Lake Balaton. Aquatic sciences, 75: 523–534.
Varadharajan, D. and Soundarapandian, P. (2014). Effect of physic-chemical parameters on species biodiversity with special reference to the phytoplankton from Muthupettai, South East Coast of india. Journal of Earth Science and Climatic Change, 5(5): 1-10.
Wilhm, J. L. and Dorris, T. C. (1968). Biological Parameters for Water Quality Criteria. BioScience, 18(6): 477-481.
Williams, V. and Twine S. (1960). Flame photometric method for sodium, potassium and calcium. Modern Methods of Plant Analysis, 5: 3-5.
Winkler, L. W. (1888). Die Bestimmung des in Wassergelösten Sauerstoffen. Berichte der Deutschen Chemischen Gesellschaft, 21: 2843–2855.