Phytoplankton heterogeneity in subtropical-semiarid reservoir with special reference to spring cyanobacterial bloom

Document Type : Original Article

Authors

1 National Institute of Oceanography and Fisheries, 101 El-Kasr El-Eny St., Cairo, Egypt

2 Botany Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt

Abstract

Lake Nasser plays a fundamental role in both local and national economy. Phyto-plankton represents one of the most interesting groups in water habitats and aquatic food chains. The present work aimed to estimate the spatiotemporal variation in phytoplankton structure, biovolume and carbon content in Khor Ramla and Khor Abu-Simbel of Lake Nasser; during the highest water level in early autumn and the lowest water level in late spring. Nine stations along each khor have been studied in 2014. A total of 180 phytoplankton taxa related to four algal divisions were identified. These divisions are: Chlorophyta (94 taxa), Cyanophyta (52 taxa), Bacillariophyta (32 taxa) and Dinophyta (2 taxa). Microcystis comperei, M. aeruginosaand Lyngbya limnetica were the dominant cyanophytes. Cosmarium spp.,Coelastrum reticulatum, Oocystis borgei, Eutetramorus fottii, Ankistrodesmus spiralis, Pediastrum simplex, Euastrum sp. andDictyosphaerium pulchellum represented the most abundant species of chlorophytes. Diatoms were dominated mainly by Aulacoseira granulata, A. ambigua, A. muzzanensis, Cyclotella ocellata, C. glomerata and Cymbella affinis.In spring, the average total biovolume of Khor Abu-Simbel (81.63 mm3/l) was higher than that of Khor Ramla (1.94 mm3/l). In autumn, the average total biovolumes in Khor Ramla (3.65 mm3/l) and Khor Abu-Simbel (3.09 mm3/l) were slightly different. Cyanophyta was dominant in both studied khors along the study period with obvious blooming at all stations of Khor Abu-Simbel during spring. In Khor Abu-Simbel, the carbon content of all groups during spring was higher than that of autumn, except for diatoms. In Khor Ramla, the carbon content of cyanobacteria and diatoms increased in autumn, while in Dinophyta and Chlorophyta the values increased in spring. A detailed discussion of the factors lead to the dominance and blooming of cyanobacteria in Lake Nasser was given. Canonical Correspondence Analysis (CCA) clarified that a combination of physical, chemical and biological factors rather than a single factor acted in harmony to control the composition and dynamics of phytoplankton community in Khor Abu- Simbel and Khor Ramla in Lake Nasser.

Keywords


Abd El-Gawad, S. S. and Abdel-Aal, E. I. (2018). Impact of flood cycle on phytoplankton and macroinvertebrates associated with Myriophyllum spicatum in Lake Nasser khors (Egypt). J. Biol. Sci., 18: 51-67.
Abd El-Karim, M. S. and Mahmoud A. M.A. (2016). Phytoplankton nutrition quality and chlorophyll a nutrient relationship in Lake Nasser, Egypt. Int. J. Fish. Aquat. Stud., 4(2): 463-473.
Abd El-Monem, A.M. (1995). Spatial distribution of phytoplankton and primary productivity in Lake Nasser, Ph.D. Thesis, University Collage for Girls, Ain Sham Univ., 161pp.
Abd El-Monem, A.M. (2008). Impact of Summer Thermal Stratification on Depth Profile of Phytoplankton Productivity, Biomass, Density and Photosynthetic Capacity in Lake Nasser (Egypt).Jordan J. Biol. Sci., 1(4):173 – 180.
Aleya, L., Desmolles, F., Michard, M., Bonet, M. P. and Devaux, J. (1994). The deterministic factors of the Microcystis aeruginosa blooms over a biyearly survey in the hypereutrophic reservoir of Villerest (Roanne, France). Arch. Hydrobiol., 99:489– 515.
Almanza, V., Pedreros, P., Laughinghouse, I.V., Félez, J., Parra, O., Azócar, M., and Urrutia, R. (2019). Association between trophic state, watershed use, and blooms of cyanobacteria in south-central Chile. Limnologica, 75: 30-41.
APHA, American Puplic Health Association, (2005). Standard Methods for the Examination of Water and Wastewater. 20th ed. Washington, D.C.
Basu, S. and Mackey, K.R.M. (2018). Phytoplankton as Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate. Sustainability, 10(3): 869-887.
Carey, C. C., Ibelings, B. W., Hoffmann, E. P., Hamilton, D. P. and Brookes, J. D. (2012). Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water res., 46(5): 1394-1407.
Chen, Y., Qin, B., Teubner, K.  and Dokulil, M. T. (2003). Long-term dynamics of       phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J. plankton res., 25(4): 445-453.
Davis, T. W., Koch, F., Marcoval, M. A., Wilhelm, S. W. and Gobler, C. J. (2012). Mesozooplankton and microzooplankton grazing during cyanobacterial blooms in the western basin of Lake Erie. Harmful Algae, 15: 26-35.
Dillard, G.E. (1991). Freshwater Algae of the Southeastern United States. Part 5.Chlorophyceae: Desrr: (Section 3). Bibl. Phycol., 90: 1-155.
El-Otify, A. M. (1985). Studies of phytoplankton on Aswan High Dam Lake. M.Sc. thesis, Assiut University, Egypt.
El-Shabrawy, G. M. (2009). “Lake Nasser-Nubia”. In: H. J. Dumont (ed.),The Nile: Origin, Environments, Limnology and Human Use, 89: 125-131.
Fead, E.M. (1980). Primary production of Lake Nasser: Feed utilization, body and fatty acid composition of Nile tilapia. Ph.D., Michigan University.
Gharib, S.M. and Abdel-Halim, A.M. (2006). Spatial variation of phytoplankton and some physico-chemical variables during the highest flood season in Lake Nasser (Egypt). Egypt. J. Aquat. Res., 32(1): 246-263.
Haakonsson, S., Rodríguez-Gallego, L., Somma, A. and Bonilla, S. (2017). Temperature and precipitation shape the distribution of harmful cyanobacteria in subtropical lotic and lentic ecosystems. Sci. Total Environ., 609: 1132-1139.
Hamed, A.F. (2000). Early warning on the blooming of phytoplankton inhabiting Lake Nasser Tushka area monitoring by remote sensing imagery, Egypt. J. Phycol., 1:121-132.
Harke, M. J., Steffen, M. M., Gobler, C. J., Otten, T. G., Wilhelm, S. W., Wood, S. A. and Paerl, H. W. (2016). A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae, 54:4-20.
Hegab, M.H. (2015). Effect of some environmental parameters on distribution of zooplankton in Lake Nasser. Ph.D., Faculty of Science, Al Azhar University, 251pp.
Hillebrand, H. and Sommer, U. (1997). Response of epilithic microphytobenthos of the Western Baltic Sea to in situ experiments with nutrient enrichment. Mar. Ecol. Prog. Ser., 160:35–46.
Hillebrand, H., Durselen, C.D., Kirschtel, D., Pollingher, U. and Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. J. Phycol., 35: 403–424.
Hussian, A. M., Abd El-Hady, H.H., Toufeek, M. E. F. and Varbiro, G. (2016). Phytoplankton structure, biochemical, stoichiometry and elemental composition in Lake Nasser, Egypt. Int. J. Appl. Environ. Sci.,11(1): 211-228.
 
 
Hussian, A.M., Napiórkowska-Krzebietke, A., Toufeek, M.E.F., Abd El-Monem, A.M.  and Morsi, H.H. (2015). Phytoplankton response to changes of physicochemical variables in Lake Nasser. Egypt. J. Elem., 20(4): 855-871.
Jacoby, J. M., Collier, D. C., Welch, E. B., Hardy, F. J., and Crayton, M. (2000). Environmental factors associated with a toxic bloom of Microcystis aeruginosa.Can. J. Fish. Aquat. Sci., 57(1): 231-240.
Khairy, H. M. and El-Sheekh, M. M. (2019). Toxicological Studies on Microcystin Produced by Microcystis aeruginosa: Assessment and Management. Egypt. J. Bot., 59(3): 551-566.
Kovač, D.J., Simeunović, J.B., Babić, O.B., Mišan, A.Č. and Milovanović, I. L. (2013). Algae in food and feed.Food Feed Res., 40(1): 21-31.
Krammer, K. and Lange-Bertalot, H. (1986). Bacillariophyceae. 1. Teil:                    Naviculaceae. In: Ettl, H., Gerloff, J., Heynig, H. and Mollenhauer, D. (eds) Süsswasser flora von Mitteleuropa, Band 2/1. Gustav Fischer Verlag: Stuttgart, New York. 876 pp.
Krammer, K. and Lange-Bertalot, H. (1988). Bacillariophyceae. 2. Teil:                        Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl, H., Gerloff, J.,                        Heynig, H. and Mollenhauer, D. (eds) Süsswasserflora von  Mitteleuropa, Band 2/2. VEB Gustav Fischer Verlag: Jena. 596 pp.
Krammer, K. and Lange-Bertalot, H. (1991). Bacillariophyceae. 3. Teil:                        Centrales, Fragilariaceae, Eunotiaceae. In: Ettl, H., Gerloff, J., Heynig, H. and Mollenhauer, D. (eds) Süsswasserflora von Mitteleuropa, Band 2/3. Gustav Fischer Verlag: Stuttgart, Jena. 576 pp.
Latif, A. F.A. (1974). Fisheries of Lake Nasser Aswan Regional Planning, High Dam Lake Development Authority, Egypt.  235 pp.
Latif, A. F. A. (1984). Lake Nasser. The new man-made lake in Egypt (with reference to Lake Nubia). In: F. B. T. El-Serveir (ed.), Ecosystems of the World 32, Lakes and Reservoirs. Elsevier, Amsterdam, 385–416.
Lehman, J. T. (1988). Selective herbivory and its role in the evolution of-phytoplankton growth strategies, p. 369-387. In: C. D. Sandgren (ed.), Growth and reproductive strategies of freshwater phytoplankton. Cambridge.
Leitão, E., Ger, K. A. and Panosso, R. (2018). Selective grazing by a tropical copepod (Notodiaptomus iheringi) facilitates Microcystis dominance. Frontiers in microbiology, 9: 301.
Leps, J. and Smilauer, P. (2003). Multivariate analysis of ecological data using CANOCO. New York: Cambridge University Press.
Li, Q.P., Dong, Y. and Wang, Y. (2016). Phytoplankton dynamics driven by vertical nutrient fluxes during the spring inter-monsoon period in the north-eastern South China Sea. Biogeosciences, 13: 455–466.
Liu, Y., Chen, W., Li, D., Huang, Z., Shen, Y. and Liu, Y. (2011). Cyanobacteria-/cyanotoxin-contaminations and eutrophication status before Wuxi drinking water crisis in Lake Taihu, China. J. Environ. Sci., 23(4): 575-581.
McQueen, D. J. and Lean, D. R. S. (1987). Influence of water temperature and nitrogen to phosphorus ratios on the dominance of blue-green algae in Lake St. George, Ontario. Can. J. Fish. Aquat. Sci., 44(3): 598-604.
Nalewajko, C. and Murphy, T. P. (2001). Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: an experimental approach. Limnology, 2(1): 45-48.
Paerl, H. W. (2014). Mitigating harmful cyanobacterial blooms in a human-and climatically-impacted world. Life, 4(4): 988-1012.
Paerl, H.W., Fulton, R.S., Moisander, P.H. and Dyble, J. (2001). Harmful freshwater algal blooms, with an emphasis on cyanobacteria. The Scientific World, 1:76–113.
Paerl, H. W. and Paul, V. J. (2012). Climate change: links to global expansion of harmful cyanobacteria. Water res., 46(5): 1349-1363.
Paerl, H.W. and Otten, T.G. (2013). Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls. Microb. Ecol., 65: 995–1010.
Reynolds, C. S. (1984). The Ecology of Freshwater Phytoplankton.Cambridge University Press, Cambridge, 384 pp.
Reynolds, C. S. (2006). The Ecology of Phytoplankton. Cambridge University Press, Cambridge, 535 pp.
Robarts, R. D. and Zohary, T. (1987). Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom‐forming cyanobacteria. New Zealand J. Mar. Freshw. Res., 21(3): 391-399.
Rocha, O.  and Duncan, A. (1985). The relationship between cell carbon and cell volume in freshwater algal species used in zooplankton studies. J. Plankton Res.,7:279–94.
Rollwagen-Bollens, G., Bollens, S. M., Gonzalez, A., Zimmerman, J., Lee, T. and Emerson, J. (2013). Feeding dynamics of the copepod Diacyclops thomasi before, during and following filamentous cyanobacteria blooms in a large, shallow temperate lake. Hydrobiologia, 705(1): 101-118.
Samaan, A.A. (1971). Report on trip to Lake Nasser to investigate its primary productivity during March 1971, Rep LUNDC., Aswan, 11pp.
Sas, H. (1989). Lake Restoration by Reduction in Nutrient Loading. Academia-Verlag Richarz GmbH, St. Augustin.
Shields, R.J. and Lupatsch, I. (2012). Algae for aquaculture and animal feeds. Technikfolgenabschätzung - Theorie und Praxis, 21(1): 23-37.
Smith, V.H. (1983). Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phyto-plankton. Science, 221: 669-671.
Sommer, U. (1994). Are marine diatoms favored by high Si: N ratios? Mar. Ecol. Prog. Ser.,115:309–15.
Sournia, A. (1978). Phytoplankton Manual. Unesco, Paris.
Srifa, A., Phlips, E.J.  and Hendrickson, J. (2016). How many seasons are there in a sub-tropical lake? A multivariate statistical approach to determine seasonality and its application to phytoplankton dynamics. Limnologica, 60:39–50.
Starmach, K. (1968). Flora Slodkonda Polaki Toms. 594 pp.
Sun, J. and Liu, D. (2003). Geometric models for calculating cell biovolume and surface area for phytoplankton. J. plankton res., 25(11): 1331–1346.
Taranu, Z. E., Zurawell, R.W., Pick, F. and GregoryEaves, I. (2012). Predicting cyanobacterial dynamics in the face of global change: the importance of scale and environmental context. Global Change Biol., 18: 3477– 3490.
Taylor, J. C., Harding, W.R. and Archibald, G.M. (2007). An illustrated guide to some common diatoms species from south Africa. WRC report TT 282/07.
Tian, C., Pei, H., Hu, W., and Xie, J. (2012). Variation of cyanobacteria with different environmental conditions in Nansi Lake, China. J. Environ. Sci., 24(8): 1394-1402.
Tillmanns, A. R., Wilson, A. E., Pick, F. R. and Sarnelle, O. (2008). Meta-analysis of cyanobacterial effects on zooplankton population growth rate: species-specific responses. Fundamental and Applied Limnology/Archiv für Hydrobiologie, 171(4):285-295.
Toufeek, M. E. F and Korium, M.A. (2015). Impact of physicochemical characteristics of some khors of Lake Nasser, Egypt. Curr. Sci. Int., 4(3): 342-350.
Utermöhl, H. (1958). Zur vervollkommung der quantitativen phytoplankton- methodik. Intern. Verein. fur Theor. Ang. Limnol., 9: 1–38.
Wang, S., Sun, N. and Chen, J. (2004). Phytoplankton investigation and eutrophication assessment of man-made lake in garden of Shanghai City, J. Fudan. Univ. Nat. Sci., 43: 972-976 (in Chinese with English abstract).
Wang, X., Qin, B., Gao, G.  and Paerl, H.W. (2010). Nutrient enrichment and selective predation by zooplankton promote Microcystis (Cyanobacteria) bloom formation. J. Plankton Res., 32: 457–470.
Wang, Y., Gu, X., Zeng, Q., Mao, Z. and Wang, W. (2016). Contrasting response of a plankton community to two filter-feeding fish and their feces: An in situ enclosure experiment. Aquaculture, 465: 330-340.
Wehr, J. D. and Sheath R. G. (2003). Freshwater algae of North America: Ecology and Classification. Academic press, an imprint of Elsevier Science.
Wetzel, R.G and Likens, G.E. (1991). Limnological Analyses. Springer‐Verlag, New York. 391 pp.
Wetzel, R.G. (2001). Limnology: Lake and river ecosystems, 3rd ed. Academic Press, New York.
Xie, L., Xie, P., Li, S., Tang, H. and Liu, H. (2003). The low TN: TP ratio, a cause or a result of Microcystis blooms? Water Res., 37(9): 2073-2080.
Zaghloul, F.A. (1985). Seasonal variations of plankton in Lake Nasser. Ph.D. thesis, Fac. Sci., Suez Canal Univ., 364pp.
Zhang, G., Zhang, P., Wang, B. and Liu, H. (2006). Ultrasonic frequency effects on the removal of Microcystis aeruginosa. Ultrason. Sonochem., 13(5): 446-450.