Studies on some phytoplankton and phytobenthos from Lake Qaroun, El-Fayoum Egypt

Document Type : Original Article

Author

entesar18@yahoo.com aa

Abstract

The present investigation concerned with the study of the algal flora from four different regions of Qaroun Lake. Phytoplankton and Phyto-benthos materials were collected during August 2019. Physical and chemical characters of water at the investigated region of the lake were studied, a total of 23 microalgal species were identified related to Cyanophyta with 10 species, 8 species to Chlorophyta, 4 species for Bacillariophyta and Euglenophyta with one species. The physico-chemical characteristics of water and soils in relation to algal distribution have also been considered. Analyze the possibility of growing microalgae Scenedesmus quadricaudain wastewater as a potential candidate for biodiesel production. Fatty acid composition and the effect of sewage water on ultrastructure of Scenedesmus quadricauda by using the Transmission Electron Microscope were investigated revealed drastic changes in the overall ultrastructure such as the chloroplast separated far from the wall, accumulation of starch and the pyrenoid disappeared. These responses of Scenedesmus quadricauda indicated their tolerance of waste water

Keywords


Abdel Hameed, M. S.; Hammouda, O.; Kobbia, I. and Hassan, S. (2007). Correlation between algal taxa and physico-chemical characters of the protected area of Wadi El-Rayan, Egypt. Int. J. Agri. Biol., 9(1): 1-10.
Abdel-Moniem, A. (1991). Changes in phytoplankton composition of Lake Qaroun in relation to variation in salinity. M. Sc. Thesis, College of Girls, Ain Shams University, Egypt
Abdel-Moniem, A. and Konswa, A. (2001). Some biotic and abiotic variables controlling primary productivity in hypertrophic lake (Lake Qaroun-Egypt).
Abdel-Satar, A. M.; Elewa, A. A.; Mekki, A. K. T. and Gohar M. E. (2003). Some Aspects on Trace Elements and Major Cations of Lake Qaroun Sediment Egypt. Bull Fac. Sci. Zagazig Univ. Egypt, 25:77 - 97.
Abdel-Satar, A.M. and Sayed, M.F. (2010). Sequential fractionation of phosphorus in sediments of El-Fayum lakes—Egypt, Environ Monit. Assess., 169: 169-178.
Abdel Wahed, M. S. M.; Mohamed, E. A.; Wolkersdorfer, C.; El-Sayed, MI.; M’nif, A. and Sillanpaa, M. (2015) . Assessment of water quality in surface waters of the Fayoum watershed, Egypt. Environ. Earth. Sci., 74: 1765 - 1783.
Al-Afify, A. D. G.; Tahoun, U. M. and Abdo, M. H. (2019). Water Quality Index and Microbial Assessment of Lake Qaroun, El-Batts and El-Wadi Drains, Fayoum Province, Egypt. Egyptian J. of Aq. Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131 Vol. 23(1): 341 -357
Asmus, H. (1982). Field measurements on respiration and secondary production of a benthic communitv in the northern Wadden Sea. Netherlands I. of Sea. Res., 1(6): 403-Y 413.
 
 
Authman, M.M.N. and Abbas, H.H.H. (2007). Accumulation and distribution of copper and zinc in both water and some vital tissues of two fish species (Tilapia zillii and Mugil cephalus) of Lake Qaroun, Fayoum Province, Egypt. Pakistan Journal of Biological Sciences, 10(13): 2106–2122.
Ball, J. (1939). Geography of Egypt. Buluq Press, Cairo, 221pp.
Blsalputra, T. and Weier, W. e. (1963). The cell wall of Scenedesmus quadricauda .American Journal of Botany,  11 Vol. 50; Iss. 10
Browitzka, M.A. and Browitzka, L.J. (1988). Microalga. And Biotechnology. Cambridge University Press, Cambridge, pp: 456-458.
Choudhary, P.; Assemany, P.P.; Naaz, F.; Bhattacharya, A.; Castro, J.D.S.; Couto, E.D.A.D.C.; Calijuri, M.L.; Pant, K.K.; Malik, A. A. (2020). review of biochemical and thermochemical energy conversion routes of wastewater grown algal biomass. Sci. Total. Environ., 726, 137961.
Crang, R.E. and Jensen, T.E. (1975). Incorporation of titanium in polyphosphate bodies of anacystisnidulans. J. Cell Biol., 67:80.
 
El-Awamri, A. A. (1984). Diatoms of El-Fayum province. Ph.D. Thesis. Fac. of   Sci. Ain Shams Univ., 175 pp.
Fathi, A.A. and Flower, J.R. (2005). Water quality and phytoplankton communities in Lake Qaroun (Egypt). Aquat. Sci. 67: 350–362
Ferrigo, D.; Galla, G.; Sforza, E.; Morosinotto, T.; Barcaccia, G. and Berrini, C.C. (2015). Biochemical characterization and genetic identity of an oil-rich Acutodesmus obliquus isolate. J Appl.  Phycol.; 27(1): 149-161
Folch, J.; Lees M. and Stanley, G.H.S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 226(1):497–50
Gani, P.; Mohamed, N.; Matias-peralta, H. and Latiff, A.A.A. (2016). Application of Phycoremediation Technology in the Treatment of Food Processing Wastewater by Freshwater Microalgae Botryococcus sp., J. Eng. Appl. Sci., 11, 7288–7292
 
 
Goswami, R. and Kalita M.K. (2011). Scenedesmus dimorphus and Scenedesmus quadricauda: Two potent indigenous microalgae strains for biomass production and CO mitigation a study on their growth behavior and lipid productivity under different concentration of urea as nitrogen source. J Algal Biomass Utilization. 2(4): 42-49.
Gushina I.A. and Harwood J.L. (2009). Algal lipids and effect on the environment on their biochemistry. In: Arts MT, Brett MT, Kainz M, editors. Lipids in Aquatic Ecosystems. Springer-Verlag New York; p. 1-24. doi:10.1007/978-0-387-89366-2_1.
Hutchison, G.E. (1957). A treatise on Limnology Vol.1. Geography, Physics and Chemistry. John Wiley and Sons Inc. New York. 1011pp
Jackson, M.L. (1962). Soil Chemical Analysis, P: 498. London, Constable and Co. Ltd
John, R.P. (1942). An ecological and taxonomic study of the algae of the British soils. The distribution of the surface growing algae. Ann. Bot., 6: 3 23–49
Kahoko, N.; Yoko. Y.; Isao, U. and Noriko, T. (2003). Ultrastructure changes in Chlamydomonas acidophila (Chlorophyta) induced by heavy metals and polyphosphate metabolism. FEMS Microbiol. Ecol., 44: 253 – 259.
Kobbia, I.; Zaki, M. and Gad, Y. (1992). Ecology of phytoplankton in estuarine regions of Abua Tarfaia drain in Lake Quarun (Egypt). Mansoura Sci Bull Egypt, 19: 141-165.
Kobbia, I.A., (1982). The standing crop and primary production of phytoplankton in lake Brollus. Egypt J. Bot., 25: 109–28.
Kumar, D. and Singh, B. (2019). Ankit. Phycoremediation of nutrients and valorisation of microalgal biomass: An economic perspective. In Application of Microalgae in Wastewater Treatment, 1st ed.; Gupta, S., Bux, F., Eds.; Springer: Cham, Switzerland; Volume 2, pp. 1–15
Lashari, K. H.; Korai A. L.; Sahato G. A. and Kazi T. G. (2009).Limnological Studies of Keenjhar Lake, District, Thatta, Sindh, Pakistan. Pak. J. Anal. Environ. Chem. 10(1-2): 39-47
 
Lürling, M. ; De Lange, H.J. and Van Donk, E. (1997). Changes in food quality of the green alga Scenedesmus induced by Daphnia infochemicals: biochemical composition and morphology. Freshwater Biol. 1997; 38: 619-628. doi: 10.1046/j.1365-2427.1997.00225.x.
Mandal, S. and Mallick, N. (2012). Biodiesel production by the green microalga Scenedesmus obliquus in a Recirculatory Aquaculture System. Appl. Environ. Microbiol., 78(16): 5929-5934.
Maršalek, B. and Rojıcková, R. (1996). Stress factors enhancing production of algal exudates: a potential self-protective mechanism? Z. Naturforsch., 51:646-650.
Mercado, I.; Álvarez, X.; Eloiza, M. V. and Cruz, A. (2020). Enhancement of Biomass and Lipid Productivities of Scenedesmus sp. Cultivated in the Wastewater of the Dairy Industry. November 2020.
Meshal, A.N. (1977). The problem of the salinity increase in Lake Qaroun (Egypt) and aproposed solution J. Cons. Ins. Explor. Mer., Vol. 37 (2): 137-143.
Miao, A.J. and Wang, W.X. (2006). Cadmium toxicity to two marine phytoplankton under different nutrient conditions. Aquat.Toxicl., 78: 114-26.
Mishra, A. and Jha, B. (2009). Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress. Bioresource Technol., 100: 3382-3386.
Mohapatra, P.K. (2006). Biotechnological approaches to microalga culture. In: Textbook of environmental biotechnology. IK International Publishing House Pvt. Ltd, New Delhi, India, pp. 167-200
Nair S. K. ; Shehana R. S. ; Girija V. K. & Meenakumari K. S. (1993). Sensitivity of blue green algae to soil reaction- a factor affecting its efficient use as biofertilizer. Journal of Tropical Agriculture., 31(1): 116 -118.
Palade, G. E; Zagury, D; Uhr, J .W. and Jamieson, J. D. (1952). Histoautoradiography study of immunoglobulin biosynthesis of mouse myeloma plasmacytes. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences. Série D: Sciences naturelles, 268:1664-1667.
Prescott, G.W. (1962). Algaeof the Western Great Lakes Area, P: 517. Brown, W.M.C. Com. USA.

Rashidi, B. and .Trindade, M.L. (2018). Detailed biochemical and morphologic characteristics of the green microalga Neochloris oleoabundans cell wall. Algal Research , 35: 152-159

Rasmy, M. and Estefan, S.F. (1983). Geochemistries of saline minerals separated from Lake Qaroun reject water. Chem.Geol.40, 269-277
Reid, G.K. (1961). Ecology of Inland Water and Estuaries. Reinhold Publishing Corporation. NewYork. 375 pp
Round, F.E. (1984). The ecology of Algae. Cambridge University Press, Cambridge, pp: 79.
Said, H.A. and Shehab, R. A. (2018). The Effects of Sewage Water on Ultrastructure of Chlorella vulgaris and Scenedesmus quadricauda Egyptian J. of Phycol., 19: 23-46.
Segura, M. B.; Luisa, H. R.; David, P. O. ; Asly Veg, B. and Karen, P. (2016). Using Scenedesmus sp. for the Phycoremediation of Tannery Wastewater Uso de Scenedesmus sp. para la Ficorremediación de Aguas Residuales de Curtiembres  DOI:http:/ /dx.doi.org/ 10.18180/ tecciencia.21.11
 Shao, Y. ;  Fang, H. ; Zhou, H. ;  Wang, Q. ; Zhu, Y. and Yong He     (2017). Detection and imaging of lipids of Scenedesmus obliquus based on confocal Raman microspectroscopy Biotechnology for Biofuels volume 10, Article number: 300 .
Singh, R.P.R. ; Bongale U.D. and Rajaro V.N. (1990). Algal flora of paddy fields from Sirsi,Karnataka State. Proceeding of the International Symposium on Phycology, Madras, India., 431-434.

Singh, D.V; Bhat, R.A; Upadhyay, A.K.;  and Singh, DP. (2021): Microalgae in aquatic environs: A sustainable approach for remediation of heavy metals and emerging contaminantsn. Environmental Technology & Innovation, 21.  101340

 
 
Soo Ha , G. ; El-Dalatony, M.M. ;  Kim, H.D Salama , E. ; Kurade, B. ;  Roh, H.S. ; Abomohra, A.  and Hun, B.J. (2020). Biocomponent-based microalgal transformations into biofuels during the pretreatment and fermentation process. J. Biortech.; 302:122809
Staub, R. (1961). Ernähr unzsphysiologish autökologische untersuchengen an der planktischen blau-alg Oscillatoria rubescence. D.C. Scheweiz. Zeitschr Hydrobiologie, 23: 82–198.
Vance, E. and Vance, J .E (2002). Biochemistry: Biochemistry of Lipids, Lipoproteins and Membranes, 4th edition, 2002.
Vogel, A.I. (1961). A Textbook of Quantitative Inorganic Analysis, (3rd Ed.), P: 583. Longmans, Green, London.
Wong, S.L.; Nakamoto, J.F. and Wainwright, J.F. (1994). Identification of toxic metals in affected algal cells in assays of wastewaters. J. of Applied Phycol.,6: 405-414.