Abbott, L. K.; Macdonald, L. M.; Wong, M. T. F.; Webb, M. J.; Jenkins, S. N. and Farrell, M. (2018). Potential roles of biological amendments for profitable grain production – A review. In Agriculture, Ecosystems and Environment, 256: 34–50. Elsevier B.V https://doi.org/10.1016/j.agee.2017.12.021.
Aebi, H. (1984). Catalase in vitro. Method Enzymol, 105:121–126.
Aleem, A.A. (1978). A preliminary list of algae from Sierra Leone. Bot. Mar, 21: 397-399.
Al-Shakankery, M; Hamouda, A. and Ammar, M. (2014). The promotive effect of different concentration of marine algae as biofertilizers on growth and yield of maize plants. J.Chem. Biol. Phys.Sci., 4(4): 3201-3211.
Anjum, S.A.; Wang, L.; Farooq, M.; Xue, L. and Ali, S. (2011). Fulvic Acid Application Improves 508 the Maize Performance under Well-watered and Drought Conditions. J. Agron. Crop 509 Sci. 197, 409–417. doi:10.1111/j.1439-037X.2011.00483.x.
Bakrudeen, A.; Adel, M.; Talati, A.; Kumar, M. S.; Abdulrahim, K. and Abdulhameed, M. M. (2017). Seaweed Polysaccharides and Their Production and Applications. In Seaweed Polysaccharides: Isolation, Biological and Biomedical Applications
369–382. Elsevier.
https://doi.org/10.1016/B978-0-12-809816-5.00020-7.
Basak, M.; Sharma, M. and Chakraborty, U. (2001). Biochemical responses of Camellia sinensis (L.) O. Kuntze to heavy metal stress.J. Environ. Biol., 22: 37-41.
Bates, L.S.; Wladren, P.R. and Tear, D.T. (1973). Rapid determination of free proline for water-stress studies. Plant Soil. 39:205–207.
Chiaiese, P.; Corrado, G.; Colla, G.; Kyriacou, M.C. and Rouphae, Y. (2018). Renewable Sources of Plant Biostimulation: Microalgae as a Sustainable Means to Improve Crop Performance. Front. Plant Sci., 9: 1–6.
Cluzet, S.; Torregrosa, C.; Jacquet, C.; Lafitte, C.; Fournier, J.; Mercier, L.; Salamagne, S.; Briand, X.; Esquerre-Tugaye, M.-T.and Dumas, B. (2004). Gene expression profiling and protection of Medicagotruncatula against a fungal infection in response to an elicitor from green algae Ulva spp. Plant, Cell and Environment, 27(7), 917–928. https://doi.org/10.1111/j.1365-3040.2004.01197.x.
Coppejans, E. andBeeckman, T. (1990). Caulerpa (Chlorophyta, Caulerpales) from the Kenyan coast. Nova Hed., 50: 111-125.
Davari, M.; Sharma, S.N. and Mirzakhani, M. (2012). Residual influence of organic materials, crop residues, and biofertilizers on performance of succeeding mung bean in an organic rice-based cropping system. Int. J. Recycl. Org. Waste Agric.
1: 1–9.
https://doi.org/10.1186/2251-7715-1-14.
DePascale, S.; Rouphael, Y. and Colla, G. (2017). Plant biostimulants: innovative tool for enhancing plant nutrition in organic farming. Eur. J. Hortic. Sci., 82: 277–285. DOI: 10.17660/eJHS.2017/82.6.2.
El Rabey, H.A.; Al-Malki, A.L. andAbulnaja, K.O. (2016). Proteome analysis of date palm (Phoenix dactylifera L.) under severe drought and salt stress. Int. Journal of Genomics.7840759:1-8.
El Shoubaky, G.A.E. and Salem, E.A. (2016). Effect of Abiotic Stress on Endogenous Phytohormones Profile in Some Seaweeds. International Journal of Pharmacognosy and Phytochemical Research; 8(1): 124-13.
El-Barody, G. S.; Moussa, M. Y.; Shallan, A. M.; Ali, A. M.; Sabh Z. A. and Shalaby, A. E. (2007). Contribution to the Aroma, Biological Activities, Minerals, Protein, Pigments and Lipid Contents of the Red Alga, Asparagopsis taxiformis (Delie) Trevisan. Journal of Applied Sciences Research 3(12): 1825-1834.
EL-Sheikh, M. A.; Sleim, S. N. and Abou-Elnasr, H. S. (2020). The Effect of Seaweed Extracts on Chemical Composition of Tomato Plant (
Solanum lycopersicum). Alexandria Science Exchange Journal,
41(6): 523–529.
https://doi.org/10.21608/asejaiqjsae.2020.135168.
Fales, F. W. (1951). Assimilation and degradation of carbohydrates by yeast cells Journal of Biological Chemistry, 193: 113-24.
Ganesan, A. R.; Tiwari, U. and Rajauria, G. (2019). Seaweed nutraceuticals and their therapeutic role in disease prevention. In Food Science and Human Wellness,
(8)3:252–263.
https://doi.org/10.1016/j.fshw.2019.08.001
García-Poza, S.; Leandro, A.; Cotas, C.; Cotas, J.; Marques, J. C.; Pereira, L. and Gonçalves, A. M. M. (2020). The Evolution Road of Seaweed Aquaculture: Cultivation Technologies and the Industry 4.0. International Journal of Environmental Research and Public Health, 17(18): 6528. https://doi.org/10.3390/ijerph17186528.
Ghori, N. H.; Ghori, T.; Hayat, M. Q.; Imadi, S. R.; Gul, A.; Altay, V. and Ozturk, M. (2019). Heavy metal stress and responses in plants. In International Journal of Environmental Science and Technology
16 (3):1807–1828. Center for Environmental and Energy Research and Studies.
https://doi.org/10.1007/s13762-019-02215-8.
Hamed, S. M.; Abd El-Rahman, A. A.; Abdel-Raouf, N. and Ibraheem, I. B. M. (2018). Role of marine macroalgae in plant protection and improvement for sustainable agriculture technology. Beni-Suef University Journal of Basic and Applied Sciences,
7(1): 104–110.
https://doi.org/10.1016/j.bjbas.2017.08.002.
Hashem, H. A.; Mansour, H. A.; El-Khawas, S. A. and Hassanein, R., A. (2019). The potentiality of marine macro-algae as bio-fertilizers to improve the productivity and salt stress tolerance of canola (
Brassica napus L.) plants. Agronomy,
9(3): 146.https://doi.org/10.3390/agronomy9030146.
Havir, E.A. and Mellate, N.A. (1987). Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol, 84: 450-455.
Heltan, M.M.; Wakibia, J.G.; Kenji, G.M. and Mwasaru, M.A. (2015). Chemical composition of common seaweeds from the Kenya Coast. J. Food Res, 4: 28–38.
Kalaivanan C.; Chandrasekaran, M. and Venkatesalu, V. (2012). Effect of seaweed liquid extract of Caulerpa scalpelliformis on growth and biochemical constituents of black gram (Vigna mungo (L.) Hepper). Phykos, 42 (2): 46-53.
Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Raigie, J.S.; Norrie, J. and Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul., 28(4):386-399.
Korzen, L.; Pulidindi, I.N.; Israel, A.; Abelson, A. and Gedanken, A. (2015). Single step production of bioethanol from the seaweed Ulva rigida using sonication., RSC Adv., 5: 16223–16229.
Kosar, F.; Akram, N.A. and Ashraf, M. (2015). Exogenously applied 5-aminolevulinic acid modulates some key physiological characteristics and antioxidative defense system in spring wheat (Triticum aestivum L.) seedlings under water stress. South Afric. J. Bot., 96: 71-77.
Kumar, G. and Sahoo, D. (2011). Effect of seaweed liquid extract on growth and yield of Triticum aestivum var. Puas Gold. J. Appl. Phycol., 23(3): 251-255.
Kumar, S.; Sehgal, S. K.; Kumar, U.; Prasad, P. V. V.; Joshi, A. K. and Gill, B. S. (2012). Genomic characterization of drought related traits in spring wheat. Euphytica, 186(1): 265–276.doi: 10.1007/s10681-012-0675-3.
Latique, S.; Chernane, H.; Mansori, M., Kaoua, E. (n.d.) (2013). Seaweed Liquid Fertilizer Effect On Physiological and Biochemical Parameters of Bean Plant (Phaesolus Vulgaris Variety Paulista) Under Hydroponic System. European Scientific Journal, (9) 30: 174-191.
Lichtenthaler, H.K. (1987). Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol., 148:331–382.
Madhava, R.K.V. and Sresty, T.V.S. (2000). Antioxidative parameters in the seedlings of pigeon pea (Cajanus Cajan L. Millspaugh) in response to Zn and Ni stresses. Plant Sci., 157:113–128.
Maehly, A.C. and Chance, B. (1954). The assay of catalase and peroxidase. In: Glick, D, editor. Methods in biochemistry analysis, New York: Interscience Publishers; (1): 357–424.
Mancuso, S., Azzarello, E., Mugnai, S., Briand, X. (2006). Marine bioactive substances (IPA extract) improve ion fluxes and water stress tolerance in potted Vitis vinifera plants. AdvHortic Sci., 20:156–161.
Mansori, M.; Chernane, H.; Latique, S.; Benaliat, A.; Hsissou, D. and El Kaoua, M. (2016). Effect of seaweed extract (Ulva rigida) on the water deficit tolerance of Salvia officinalis L. J Appl Phycol, 28:1363–1370.
Mirparsa, T.; Ganjali, H.R. and Dahmardeh, M. (2016). The effect of biofertilizers on yield and yield components of sunflower oil seed and nut. Int. J. Agric. Biosci., 5: 46–49.
Mohy El-Din, S.M. (2015). Utilization of seaweed extracts as bio-fertilizers to stimulate the growth of wheat seedlings, Egypt. J. Exp. Biol. (Bot.), 11(1): 31-39.
Muhammad, S.; Anjum, A.S.; Kasana, M.I. and Randhawa, M.A. (2013). Impact of organic fertilizer, humic acid and sea weed extract on wheat production in Pothowar region of Pakistan. Pak. J. Agri. Sci., 50: 677-681.
Nabti, E.; Jha, B. and Hartmann, A. (2017). Impact of seaweeds on agricultural crop production as biofertilizer. Int. J.Environ. Sci. Technol., (14): 1119–1134.
Nada, E.; Ben, A. E.; Ferjani, A.; Rhouma, A. E.; Ae, A.; RwinaBechir, B.; Mezghani, A. E.; Ae, I. and Makki, B. (2007). Cadmium-induced growth inhibition and alteration of biochemical parameters in almond seedlings grown in solution culture. Springer. Acta Physiol Plant.,
29:57–62. DOI 10.1007/s11738-006-0009-y(3)
https://doi.org/10.1007/s11738-006-0009-y.
Nassar, R.M.A.; Shanan, N.T. and Reda, F.M. (2016). Active yeast extract counteracts the harmful effects of salinity stress on the growth of leucaena plant. Scientia Hortic., 201: 61-67.
Nawar, D.A.S. and Ibraheim, S.K.A. (2014). Effect of Algae Extract and nitrogen fertilizer rates on growth and productivity of peas. Middle East J. Agric. Res., 3 (4): 1232–1241.
Nazi, H.; Akrami, N.A. and Ashraf, M. (2016). Impact of ascorbic acid on growth and some physiological attributes of cucumber (Cucumissativus) plants under water-deficit condition. Pakistan Journal of Botany, (48): 877-883.
Ozyigit, II; Filiz, E.; Vatansever, R.; Kurtoglu, K.Y.; Koc I, Öztürk, M.X. and Anjum, N.A. (2016). Identification and comparative analysis of H2O2-scavenging enzymes (ascorbate peroxidase and glutathione peroxidase) in selected plants employing bioinformatics approaches. Front Plant Sci., 7:301.
Pise, N.M. and Sabale A.B. (2010). Effect of Seaweed Concentrates On The Growth and Biochemical Constituents of Trigonella Foenum-Graecum L. J Phytol.,2(4) 50-56.
Pramanick, B.; Brahmachari, K.; Mahapatra, B. S.; Ghosh, A.; Ghosh, D. and Kar, S. (2017). Growth, yield and quality improvement of potato tubers through the application of seaweed sap derived from the marine alga
Kappaphycus alvarezii. Journal of Applied Phycology,
29(6): 3253–3260.
https://doi.org/10.1007/s10811-017-1189-0.
Salah El Din, R. A.; Elbakry, A. A.; Ghazi, S. M. and Abdel Hamid, O. M. (2008). Effect of seaweed extract on the growth and yield of faba bean (VICIA FABA L.). Egyptian Journal of Phycology, 9(1), 25–38. https://doi.org/10.21608/EGYJS.2008.114808.
Rathore, S. S.; Chaudhary, D. R.; Boricha, G. N.; Ghosh, A.; Bhatt, B. P.; Zodape, S. T. and Patolia, J. S. (2009). Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. South African Journal of Botany, 75(2): 351–355. https://doi.org/10.1016/j.sajb.2008.10.009.
Rouphael, Y.; Giordano, M.; Cardarelli, M.; Cozzolino, E.; Mori, M.; Kyriacou, M., Bonini, P. and Colla, G. (2018). Plant- and Seaweed-Based Extracts Increase Yield but Differentially Modulate Nutritional Quality of Greenhouse Spinach through Biostimulant Action. Agronomy,
8(7): 126.
https://doi.org/10.3390/agronomy8070126.
Saeed, A.; Abotaleb, S.; Alam, N.; ELMehalawy, A. and Gheda, S. (2020). In vitro assessment of antimicrobial, antioxidant and anticancer activities of some marine macroalgae. Egyptian Journal of Botany.
60(1): 81-96.
http://dx.doi.org/10.21608/EJBO.2019.11363.1303.
Safinaz, A. F. and Ragaa, A. H. (2013). Effect of some red marine algae as biofertilizer on growth of maize (Zea mays L.) plants, Intern. Food Res. J., 20(4): 1629-1632.
Schlegel, H. G. (1956). Die Verwertung organischer Säuren durch Chlorella im Licht. Planta, 47(5): 510–526. https://doi.org/10.1007/BF01935418.
Silva-Ortega C.O; Ochoa-Alfaro, A.E.; Reyes-Agüerob, J.A.; Aguado-Santacruz, G.A. and Jimenez-Bremont, J.F. (2008). Salt stress increases the expression of P5CS gene and induces proline accumulation in cactus pear. Plant Physiology and Biochemistry 46:82–92.
Singh, R.P. and Agrawal, M. (2010). Effect of different sewage sludge applications on growth and yield of Vigna radiata L. field crop: Metal uptake by plant. Ecol. Eng., 36: 969–972.
Sivasankari, S.; Venkatesalu, V.; Anantharaj, M. and Chandrasekaran, M., (2006).Effect of seaweed extracts on the growth and biochemical constituents of Vigna sinensis. Bioresour. Technol. 97: 1745–1751.
Tarakhovskaya, E. R.; Maslov, Yu.I. and Shishova M. F. (2007). Phytohormones in Algae. ISSN 1021-4437, Russian J. of Plant Physiology, 54 (2): 163–170.
Thorsen, M.K.; Woodward, S. and McKenzi, B.M. (2010). Kelpaffects rooting and plant vigour in crops and native plants from arable grassland in the Outer Herbides, Scotland. J. Coast. Conserv, 14(3): 239-247.
Tuhy, Ł., Samoraj, M., Baśladyńska, S., Chojnacka, K. (2015). New micronutrient fertilizer biocomponents based on seaweed biomass. Polish Journal of Environmental Studies, 24(5):2213–2221.
https://doi.org/10.15244/pjoes/39552.
Xie, X.; He, Z.; Chen, N.; Tang, Z.; Wang Q. and Cai, Y. (2019). The roles of environmental factors in regulation of oxidative stress in plant. BioMed Research Int, 2019:21–27.
Xu, C. and Leskovar, D. I. (2015). Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Scientia Horticulturae., 183: 39–47. https://doi.org/10.1016/j.scienta.2014.12.004.
Yakhin, O. I.; Lubyanov, A. A.; Yakhin, I. A. and Brown, P. H. (2017). Biostimulants in plant science: a global perspective. Front. Plant Sci., 7:2049. DOI: 10.3389/fpls.2016.02049.
You, J. and Chan, Z. (2015). ROS regulation during abiotic stress responses in crop plants. Front. Plant Sci., 6: 1092
Zhang, X. and Ervin E.H. (2008). Impact of Seaweed Extract-Based Cytokinins and Zeatin Riboside on Creeping Bentgrass Heat Tolerance, Virginia Polytechnic Institute and State Univ Crop Sci., 48:364–370.
Zhang, X. and Ervin, E. H. (2004). Cytokinin containing Seaweed and Humic Acid Extracts Associated with Creeping Bentgrass Leaf Cytokinins and Drought Resistance. Crop Science,
44(5): 1737–1745.
https://doi.org/10.2135/cropsci2004.1737.