Growth, primary metabolites, and cell morphogenesis of Scenedesmus opoliensis in response to zinc oxide nanoparticles stress

Document Type : Original Article

Authors

1 Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.

2 Department of Soil Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, P.O. 175, El-Orman, Giza, Egypt.

Abstract

Zinc oxide nanoparticles (ZnO-NPs) are widely used in industrial and agricultural applications in addition to cosmetic products. However, the extensive use of ZnO-NPs can impose serious environmental problems on the aquatic ecosystem. So far, the hazardous impact of ZnO-NPs on phytoplankton is not well studied. Among myriad aquatic microorganisms, microalgae are sensitive indicators for water pollution. The current study investigated the toxic effects of different concentrations of ZnO-NPs (10-200 mg/L) on growth, metabolic profile, and morphology of the green microalga, S. opoliensis. The results revealed that ZnO-NPs significantly decreased cell growth, chlorophyll-a (Chl-a), and carbohydrate content with a concentration-dependent manner. In contrast, the protein and lipid contents were progressively increased after ZnO-NPs treatment compared to the control condition. The morphological examinations revealed obvious changes in the microalgal cell particularly at high ZnO-NPs concentrations. The present study provides a new report on the ecotoxicology of ZnO-NPs contamination on the aquatic ecosystem and highlights its toxic impact on S. opoliensis

Keywords


Anusha, L.; Devi, C. S. and Sibi, G. (2017). Inhibition effects of cobalt nano particles against fresh water algal blooms caused by Microcystis and Oscillatoria. American Journal of Applied Scientific Research, 3(4): 26-32.
Arciniegas-Grijalba, P. A.; Patiño-Portela, M. C; Mosquera-Sánchez, L. P.; Sierra, B. G.; Muñoz-Florez, J. E.; Erazo-Castillo, L. A. and Rodríguez-Páez, J. E. (2019). ZnO-based nanofungicides: Synthesis, characterization and their effect on the coffee fungi Mycena citricolor and Colletotrichum sp. Materials Science and Engineering: C, 98: 808-825.‏
Aravantinou, A. F.; Andreou, F. and Manariotis, I. D. (2017). Long-term toxicity of ZnO nanoparticles to Scenedesmus rubescens cultivated in different media. Scientific reports, 7(1): 1-11.
Aruoja, V.; Dubourguier, H. C.; Kasemets, K. and Kahru, A. (2009). Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitataScience of the Total Environment407 (4): 1461-1468.‏
Auffan, M.; Flahaut, E.; Thill, A.; Mouchet, F.; Carriere, M.; Gauthier, L.; Achouak, W.; Rose, J.; Wiesner, M.R. and Bottero, J. Y. (2011). Ecotoxicology: Nanoparticle reactivity and living organisms. In Nanoethics and nanotoxicology (pp. 325-357). Springer, Berlin, Heidelberg.
Badour, S.S.A. (1959). Analytisch-chemische untersuchung des kaliummangels bei Chlorella im vergleich mit anderen mangelzustanden. Ph.D. Dissertation, Gottingen University, Germany.
BBC, 2015. Nanotechnology in Environmental Applications: The Global Market, Market Research Report. (Accessed on 20 September 2021).
Bhuvaneshwari, M.; Iswarya, V.; Archanaa, S.; Madhu, G. M.; Kumar, G. S.; Nagarajan, R.; Chandrasekaran, N. and Mukherjee, A. (2015). Cytotoxicity of ZnO NPs towards freshwater algae Scenedesmus obliquus at low exposure concentrations in UV-C, visible and dark conditions. Aquatic Toxicology162: 29-38.‏
Cattaneo, A.G. (2018). Nanotoxicological evaluation in marine water ecosystem: a detailed review. In: Kumar V, Dasgupta N, Ranjan S (eds) Environmental Toxicity of Nanomaterials, 1st edn. CRC Press, pp 61–90.
Chen, F.; Xiao, Z.; Yue, L.; Wang, J.; Feng, Y.; Zhu, X.; Wang, Z. and Xing, B. (2019). Algae response to engineered nanoparticles: current understanding, mechanisms and implications. Environmental Science: Nano6 (4): 1026-1042.‏
Chen, X.; Zhang, C.; Tan, L. and Wang, J. (2018). Toxicity of Co nanoparticles on three species of marine microalgae. Environmental Pollution236: 454-461.‏
da Costa, C. H.; Perreault, F.; Oukarroum, A.; Melegari, S. P.; Popovic, R. and Matias, W. G. (2016). Effect of chromium oxide (III) nanoparticles on the production of reactive oxygen species and photosystem II activity in the green alga Chlamydomonas reinhardtiiScience of the Total Environment565: 951-960.
Djearamane, S.; Wong, L. S.; Lim, Y. M. and Lee, P. F. (2019). Short-term cytotoxicity of zinc oxide nanoparticles on Chlorella vulgaris. Sains Malaysiana, 48(1), 69-73.
Elrefaeya, A. A.; El-Gamal, A. D.; Hamed, S. M. and El-Belely, E. F. (2021). Algae-mediated biosynthesis of zinc oxide nanoparticles from Cystoseira crinite (Fucales; Sargassaceae) and its antimicrobial and antioxidant activities. Egyptian Journal of Chemistry. In press.
Espinasse, B. P.; Geitner, N. K.; Schierz, A.; Therezien, M.; Richardson, C. J.; Lowry, G. V.; Ferguson, L. and Wiesner, M. R. (2018). Comparative persistence of engineered nanoparticles in a complex aquatic ecosystem. Environmental Science and Technology52 (7): 4072-4078.
Fazelian, N.; Movafeghi, A.; Yousefzadi, M. and Rahimzadeh, M. (2019). Cytotoxic impacts of CuO nanoparticles on the marine microalga Nannochloropsis oculata. Environmental Science and Pollution Research26 (17): 17499-17511.‏
Fazelian, N.; Yousefzadi, M. and Movafeghi, A. (2020). Algal response to metal oxide nanoparticles: analysis of growth, protein content, and fatty acid composition. BioEnergy Research, 13 (3): 1-11.‏
Global Nanotechnology Market, 2018–2024: Market is Expected to Exceed US$ 125 Billion. Available online: https://www.prnewswire.com/news-releases/global-nanotechnology-market-2018-2024-market-is-expected-to-exceed-us-125-billion-300641054.html (accessed on 20 September 2021).
Gupta, R. and Xie, H. (2018). Nanoparticles in daily life: applications, toxicity and regulations. Journal of Environmental Pathology, Toxicology and Oncology37 (3): 209-230.
Hamed, S. M.; Raut, M. P.; Jaffé, S. R. and Wright, P. C. (2017). Evaluation of the effect of aerobic–anaerobic conditions on photohydrogen and chlorophyll a production by environmental Egyptian cyanobacterial and green algal species. International Journal of Hydrogen Energy, 42(10): 6567-6577.
Hamed, S. M.; Hagag, E. S. and Abd El-Raouf, N. (2019). Green production of silver nanoparticles, evaluation of their nematicidal activity against Meloidogyne javanica and their impact on growth of faba bean. Beni-Suef University Journal of Basic and Applied Sciences, 8(1): 1-12.
Hamed, S. M.; Hassan, S. H.; Selim, S.; Wadaan, M. A.; Mohany, M.; Hozzein, W. N. and AbdElgawad, H. (2020). Differential responses of two cyanobacterial species to R-metalaxyl toxicity: Growth, photosynthesis and antioxidant analyses. Environmental Pollution, 258: 113681.
Hamed, S. M.; Hozzein, W. N.; Selim, S.; Mohamed, H. S. and AbdElgawad, H. (2021). Dissipation of pyridaphenthion by cyanobacteria: Insights into cellular degradation, detoxification and metabolic regulation. Journal of Hazardous Materials, 402: 123787
Handy, R. D.; Cornelis, G.; Fernandes, T.; Tsyusko, O.; Decho, A.; SaboAttwood, T.; Metcalfe, C.; Steevens, J.A.; Klaine, S.J.; Koelmans, A.A. and Horne, N. (2012). Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environmental Toxicology and Chemistry31 (1): 15-31.‏
He, M.; Yan, Y.; Pei, F.; Wu, M.; Gebreluel, T.; Zou, S. and Wang, C. (2017). Improvement on lipid production by Scenedesmus obliquus triggered by low dose exposure to nanoparticles. Scientific reports7 (1): 1-12.‏
Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M.; Seibert, M. and Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal54 (4): 621-639.‏
Hu, X.; Lu, K.; Mu, L.; Kang, J. and Zhou, Q. (2014). Interactions between graphene oxide and plant cells: Regulation of cell morphology, uptake, organelle damage, oxidative effects and metabolic disorders. Carbon80: 665-676.‏
Huang, J.; Cheng, J. and Yi, J. (2016). Impact of silver nanoparticles on marine diatom Skeletonema costatum. Journal of Applied Toxicology, 36(10): 1343-1354.
Jameel, M.; Shoeb, M.; Khan, M. T.; Ullah, R.; Mobin, M.; Farooqi, M. K. and Adnan, S. M. (2020): Enhanced insecticidal activity of thiamethoxam by zinc oxide nanoparticles: A novel nanotechnology approach for pest control. ACS Omega, 5(3): 1607-1615.‏
Ji, J.; Long, Z. and Lin, D. (2011). Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chemical Engineering Journal170(2-3): 525-530.‏
Kaliamurthi, S.; Selvaraj, G.; Cakmak, Z. E.; Korkmaz, A. D. and Cakmak, T. (2019). The relationship between Chlorella sp. and zinc oxide nanoparticles: Changes in biochemical, oxygen evolution, and lipid production ability. Process Biochemistry, 85: 43-50.
Kang, N. K.; Lee, B.; Choi, G. G.; Moon, M.; Park, M. S.; Lim, J. and Yang, J. W. (2014). Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 nanoparticles. Korean Journal of Chemical Engineering31(5): 861-867.‏
Li, Y.; Mu, J.; Chen, D.; Han, F.; Xu, H.; Kong, F.; Xie, F. and Feng, B. (2013). Production of biomass and lipid by the microalgae Chlorella protothecoides with heterotrophic-Cu (II) stressed (HCuS) coupling cultivation. Bioresource Technology, 148: 283-292.
Li, X; Schirmer, K.; Bernard, L.; Sigg, L.; Pillai, S. and Behra, R. (2015). Silver nanoparticle toxicity and association with the alga Euglena gracilisEnvironmental Science: Nano2(6): 594-602.‏
Lichtenthaler, H. K. and Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents, Biochemical Society Transactions, 11 (5): 591-592.
Lowry, O. H.; Rosebrough, N. J.; Farr, A. L. and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry193: 265-275.‏
Luo, Z.; Wang, Z.; Yan, Y.; Li, J.; Yan, C. and Xing, B. (2018). Titanium dioxide nanoparticles enhance inorganic arsenic bioavailability and methylation in two freshwater algae species. Environmental Pollution238: 631-637.‏
Manke, A.; Wang, L. and Rojanasakul, Y. (2013). Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Research International2013: 1–15.
Manzo, S.; Miglietta, M. L.; Rametta, G.; Buono, S. and Di Francia, G. (2013). Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Science of the Total Environment445: 371-376.‏
Mishra, S. K.; Suh, W. I.; Farooq, W.; Moon, M.; Shrivastav, A.; Park, M. S. and Yang, J. W. (2014). Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresource Technology155: 330-333.‏
Movafeghi, A.; Khataee, A.; Abedi, M.; Tarrahi, R.; Dadpour, M. and Vafaei, F. (2018). Effects of TiO2 nanoparticles on the aquatic plant Spirodela polyrrhiza: evaluation of growth parameters, pigment contents and antioxidant enzyme activities. Journal of Environmental Sciences64: 130-138.‏
Newman, M. D.; Stotland, M. and Ellis, J. I. (2009): The safety of nanosized particles in titanium dioxide–and zinc oxide–based sunscreens. Journal of the American Academy of Dermatology, 61(4): 685-692.‏
Nguyen, M. K.; Moon, J. Y. and Lee, Y. C. (2020). Microalgal ecotoxicity of nanoparticles: An updated review. Ecotoxicology and Environmental Safety201 (3): 1-20.‏
Nowack, B. and Bucheli, T. D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution150 (1): 5-22.
Oukarroum, A.; Bras, S.; Perreault, F. and Popovic, R. (2012). Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolectaEcotoxicology and Environmental Safety78: 80-85.‏
Pancha, I.; Chokshi, K.; George, B.; Ghosh, T.; Paliwal, C.; Maurya, R. and Mishra, S. (2014). Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology156: 146-154.‏
Perreault, F.; Oukarroum, A.; Melegari, S. P.; Matias, W. G. and Popovic, R. (2012). Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii. Chemosphere87(11): 1388-1394.‏
Piccinno, F.; Gottschalk, F.; Seeger, S. and Nowack, B. (2012). Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research, 14(9): 1-11.
Sabatini, S. E.; Juárez, Á. B.; Eppis, M. R.; Bianchi, L.; Luquet, C. M. and de Molina, M. D. C. R. (2009). Oxidative stress and antioxidant defenses in two green microalgae exposed to copper. Ecotoxicology and Environmental Safety72(4):1200-1206.‏
Staub, R. (1961). Ernährungsphysiologisch-autökologische Untersuchungen an der planktischen BlaualgeOscillatoria rubescens DC. Schweizerische Zeitschrift für Hydrologie23(1): 82-198.‏
Sun, Y. and Huang, Y. (2017). Effect of trace elements on biomass, lipid productivity and fatty acid composition in Chlorella sorokiniana. Brazilian Journal of Botany, 40(4): 871-881.
Vogs, C.; Bandow, N. and Altenburger, R. (2013). Effect propagation in a toxicokinetic/toxicodynamic model explains delayed effects on the growth of unicellular green algae Scenedesmus vacuolatusEnvironmental Toxicology and Chemistry32(5): 1161-1172.‏
Wang, F.; Guan, W.; Xu, L.; Ding, Z.; Ma, H.; Ma, A. and Terry, N. (2019). Effects of nanoparticles on algae: Adsorption, distribution, ecotoxicity and fate. Applied Sciences, 9(8): 1534.
Wang, Z.; Li, J.; Zhao, J. and Xing, B. (2011). Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environmental Science and Technology45(14): 6032-6040.
Yusefi-Tanha, E.; Fallah, S.; Rostamnejadi, A. and Pokhrel, L. R. (2020): Zinc oxide nanoparticles (ZnONPs) as nonfertilizer: Improvement on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Science of The Total Environment, 738: 140240.