Identifying of the bioactive compounds from two aquatic cyanobacteria, Leptolyngbya sp. and Desertifilum sp., with antioxidant and antimicrobial activities

Document Type : Original Article

Authors

1 National Institute of Oceanography and Fisheries (NIOF), Egypt.

2 Botany and Microbiology Deptment, Faculty of Science, Al-Azhar University, Cairo (Boys)

Abstract

Cyanobacterial metabolites have gained a great attention during the last few decades, as they are a potential source for bioactive compounds. In the present study the total phenolic and flavonoid compounds in the biomass of Leptolyngbya sp. Q1 (MZ504747) and Desertifilum sp. Q2 (MZ504748) were estimated and their methanolic extracts were screened for their free radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and antimicrobial activity (well diffusion method) against different Gram-positive, Gram-negative bacteria in addition to Candida albicans. The results showed that Leptolyngbya sp. had higher total phenolic compounds content (8.89± 0.89 mg GAE/g DW) and total flavonoid content (1.72± 0.01 mg QE/g DW) compared to those recorded in Desertifilum sp. Both extracts were detected to have antioxidant activity against DPPH free radicals, and the IC50 values were 2.18 and 2.85 mg/ml for Leptolyngbya sp. and Desertifilum sp., respectively. Also, Leptolyngbya sp. extract was determined to have higher antimicrobial activity against tested microorganisms compared to Desertifilum sp. extract. Finally, the GC-MS profile for both extracts indicated the presence of phenolic compounds, saturated and unsaturated fatty acids such as 3-Allyl-2-methoxyphenol, Tetradecanoic acid (Myristic acid), n-Hexadecanoic acid (Palmitic acid), Phytol, Linoleic acid, Linolenic acid, Palmitoleic acid, cis-Vaccenic acid and other bioactive compounds of well-known pharmaceutical and industrial importance.

Keywords


Abd El-karim, M. S. (2016). Chemical composition and antimicrobial activities of cyanobacterial mats from hyper saline lakes, Northern western desert, Egyptian journal of applied sciences, 16(1): 1-10.
Ali, I. H. and Doumandji, A. (2017).  Comparative phytochemical analysis and in vitro antimicrobial activities of the cyanobacterium Spirulina platensis and the green alga Chlorella pyrenoidosa: potential application of bioactive components as an alternative to infectious diseases. Bulletin de l’Institut Scientifique, Rabat, Section Sciences de la V, 39: 41-49.
Allen, M. M. (1968) Simple conditions for growth of unicellular blue-green algae. J. Gen. Microbiol. 51: 199 – 202.
Alsenani, F.; Tupally, K. R. b.; Chua, E. T.; Eltanahy, E.; Alsufyani, H.; Parekh, H. S. and Schenk, P. M. (2020).Evaluation of microalgae and Cyanobacteria as potential sources of antimicrobial compounds. Saudi Pharmaceutical Journal, 28: 1834–1841.
Ananya, and Kamal, A. (2016). Fatty acid profiling and Antioxidant potential of total polar lipid content of Cyanobacterium Nostoc muscurum. International Journal of Pharmacy and Pharmaceutical Sciences, 8(2): 159-163.
Badr, O. A. M.; EL-Shawaf, I. I. S.; El-Garhy, H. A. S.; Moustafa, M. M. A. and Ahmed-Farid, O. A. (2019). The potent therapeutic effect of novel cyanobacterial isolates against oxidative stress damage in redox rats. Journal of Applied Microbiology, 126(4), 1278-1289.
 
Blagojević, D.; Babić, O.; Rašeta, M.; Šibul, F.; Janjušević, L. and Simeunović, J. (2018). Antioxidant activity and phenolic profile in filamentous cyanobacteria: the impact of nitrogen. Journal of Applied Phycology, 30(4), 2337–2346.
Cirés, S.; Casero, M. C.; Quesada, A. (2017). Toxicity at the edge of life: A review on cyanobacterial toxins from extreme environments. Marine Drugs, 15, 233.
Dadheech, P. K.; Mahmoud, H.; Kotut, K., and Krienitz, L. (2014). Desertifilum Fontinale Sp. nov. (Oscillatoriales, Cyanobacteria) From a Warm spring in East Africa, Based on Conventional and Molecular Studies. Fottea Olomouc 14 (2): 129–140.
Demay, J.; Bernard, C.; Reinhardt, A. and Marie, B. (2019). Natural products from cyanobacteria: focus on beneficial activities. Marine Drugs, 17(6), 320.
Dussault, D.; Dang, Vu K.; Vansach, T.; Horgen, F. D. and Lacroix, M. (2016). Antimicrobial effects of marine algal extracts and cyanobacterial pure compounds against five foodborne pathogens. Food Chemistry, 199: 114-118.
El Semary, N. A.; Ghazy, S. M. and Abd El Naby, M. M. (2009). Investigating the Taxonomy and Bioactivity of an Egyptian Chlorococcum Isolate. Australian Journal of Basic and Applied Sciences, 3(3): 1540-1551.
El Semary, N. A. (2012). The characterization of bioactive compounds from an Egyptian Leptolyngbya sp. strain. Annals of Microbiology, 62: 55–59.
El-Chaghaby, G. A.; Rashad, S.; Abdel-Kader, S. F.; Rawash, E. A. and Abdul Moneem, M. (2019).Assessment of phytochemical components, proximate composition and antioxidant properties of Scenedes musobliquus, Chlorella vulgaris and Spirulina platensis algae extracts. Egyptian Journal of Aquatic Biology & Fisheries, 23(4): 521-526
El-Sheekh, M. M.; Osman, M. E. H.; Dyab, M. A. and Amera, M. S. (2006). Production and characterization of antimicrobial active substance from the Cyanobacterium Nostoc muscorum. Environmental Toxicology and Pharmacology, 21: 42–50
Elshobary, M. E.; El-Shenody, R. A.; Ashour, M.; Zabed, H. M.; Qi, X. (2020).Antimicrobial and antioxidant characterization of bioactive components from Chlorococcum minutum. Food Bioscience 100567.
Farghl, A. A. M.; El-Sheekh, M. M. and Mousa, A. S. H. H. (2019). Extraction and characterization of antimicrobial active substance from Cyanobacteria Nostoc carneum and Anabaena circinalis. Fresenius Environmental Bulletin, 28(7): 5481-5490.
Gara-Ali M.; Zili F.; Hosni K.; Ben Ouada H. and Ben-Mahrez K. (2021). Lipophilic extracts of the thermophilic cyanobacterium Leptolyngbya sp. and chlorophyte Graesiella sp. and their potential use as food and anticancer agents, Algal Research, 60,102511.
Gheda, S. F. and Ismail, G. A. (2020). Natural products from some soil cyanobacterial extracts with potent antimicrobial, antioxidant and cytotoxic activities. Anais da Academia Brasileira de Ciências, 92(2): e20190934.
Gonelimali, F. D.; Lin, J.; Miao, W.; Xuan, J.; Charles, F.; Chen, M. and Hatab, S. R. (2018).Antimicrobial Properties and Mechanism of Action of Some Plant Extracts Against Food Pathogens and Spoilage Microorganisms. Frontiers in Microbiology, 9:1639.
Hamazaki, K.; Suzuki, N.; Kitamura, K.; Hattori, A.; Nagasawa, T.; Itomura, M. and Hamazaki, T. (2016). Is vaccenic acid (18:1t n-7) associated with an increased incidence of hip fracture? An explanation for the calcium paradox. Prostaglandins, Leukotrienes and Essential Fatty Acids, 109, 8–12.
Heidari, F.; Riahi, H.; Yousefzadi M. and Asadi M. (2012).Antimicrobial Activity of Cyanobacteria Isolated From Hot Spring of Geno. Middle-East Journal of Scientific Research, 12 (3): 336-339.
Hobby, C. R.; Herndon, J. L.; Morrow, C. A.; Peters, R. E.; Symes, S. J. and Giles, D. K. (2019). Exogenous fatty acids alter phospholipid composition, membrane permeability, capacity for biofilm formation, and antimicrobial peptide susceptibility in Klebsiella pneumoniae. Microbiology Open, 8 (2): e00635.
Hossain, M. F.; Ratnayake, R. R.; Meerajini, K. and Kumara, K. L. W. (2016). Antioxidant properties in some selected cyanobacteria isolated from fresh water bodies of Sri Lanka. Food Science & Nutrition, 4(5): 753–758.
Hubbard, N. E.; Socolich, R. J. and Erickson, K. L. (1996). Dietary myristic acid alters acylated proteins in activated murine macrophages. The Journal of Nutrition, 126(6): 1563–1570.
Jadhav, B. K.; Khandelwal, K. R.; Ketkar, A. R. and Pisal, S. S. (2004). Formulation and evaluation of muco-adhesive tablets containing eugenol for the treatment of periodontal diseases. Drug Development and Industrial Pharmacy, 30(2): 195-203.
Jerez-Martel, I.; García-Poza, S.; Rodríguez-Martel, G.; Rico, M.; Afonso-Olivares, C. and Gómez-Pinchetti, J. (2017). Phenolic Profile and Antioxidant Activity of Crude Extracts from Microalgae and Cyanobacteria Strains. Journal of Food Quality, 2017: 2924508.
Jia, Z.; Tang, M. and Wu. J. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64: 555- 559.
Kim, J. H.; Choi, W.; Jeon, S. M.; Kim, T.; Park, A.; Kim, J.; Heo,S. J.; Oh,C.; ShimW. B. and Kang, D. H. (2015).Isolation and characterization of Leptolyngbya sp. KIOST-1, a basophilic and euryhaline filamentous cyanobacterium from an open paddle-wheel race way Arthrospira culture pond in Korea. Journal of Applied Microbiology, 119(6): 1597–1612.
Klejdus, B.; Lojková, L.; Plaza, M.; Šnóblová,M. and Štěrbová,D. (2010). Hyphenated technique for the extraction and determination of isoflavones in algae: Ultrasound-assisted supercritical fluid ex- traction followed by fast chromatography with tandem mass spectrometry. Journal of Chromatography, A. 1217: 7956-7965.
Kuda, T.; Kunii, T.; Goto, H.; Suzuki, T. and Yano, T. (2007). Varieties of antioxidant and antibacterial properties of Eckloniastolonifera and Eckloniakurome products harvested and processed in the Noto peninsula, Japan. Food Chem. 103 (3): 900-905.
Li Y.; Naman C. B.; Alexander K. L.; Guan H. and Gerwick W. H. (2020). The Chemistry, Biochemistry and Pharmacology of Marine Natural Products from Leptolyngbya, a Chemically Endowed Genus of Cyanobacteria. Mar. Drugs, 18(10), 508.
Malathi, T.; Ramesh,  B. M.; Mounika, T.; Snehalatha, D. and  Digamber, R. B. (2014). Screening of cyanobacterial strains for antibacterial activity. Phykos, 44(2): 446-451.
Martínez-Franc´es, E. and Escudero-O˜nate, C. (2018).Cyanobacteria and microalgae in the production of valuable bioactive compounds. Microalgal Biotechnology, 6, 104–128.
Martins, R. F.; Ramos, M. F.; Herfindal, L.; Sousa, J. A.; Skærven, K. and Vasconcelos, V. M. (2008). Antimicrobial and Cytotoxic Assessment of Marine Cyanobacteria - Synechocystis and Synechococcus. Mar. Drugs, 6(1), 1–11.
Mundt, S.; Kreitlow, S. and Jansen, R. (2003). Fatty acids with Antibacterial activity from the Cyanobacterium Oscillatoria redekei HUB 051. Journal of Applied Phycology, 15: 263–267.
Nainangu, P.; Antonyraj, A. P. M.; Subramanian, K.; Kaliyaperumal, S.; Gopal, S.; Renuka, P.S. and Aruni, W.A. (2020).In vitro screening of antimicrobial, antioxidant, cytotoxic activities, and characterization of bioactive substances from freshwater cyanobacteria Oscillatoria sp. SSCM01 and Phormidium sp. SSCM02. Biocatalysis and Agricultural Biotechnology, 29:101772.
Park, P. J.; Shahidi, F. and Jeon, Y.J. (2004). Antioxidant activities of enzymatic extracts from an edible seaweed Sargassum horneri using ESR spectrometry. J. Food Lipids, 11(1): 15–27.
Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D. and Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative medicine and cellular longevity, 8416763.
Pumas, C.; Vacharapiyasophon, P.; Peerapornpisal, Y.; Leelapornpisid, P.; Boonchum, W. and Ishii, M. (2011). Thermostablility of phycobiliproteins and antioxidant activity from four thermotolerant cyanobacteria. Phycological Research, 59: 166-174.
Rai, S.V. and Rajashekhar, M. (2015). Phytochemical screening of twelve species of phytoplankton isolated from Arabian Sea coast. Journal of Coastal Life Medicine, 3(11): 857-863.
Ruiz-Nunez, B.; Dijck-Brouwer, D. A. J. and Muskiet, F. A. J. (2016).The relation of saturated fatty acids with low-grade inflammation and cardiovascular disease. Journal of Nutritional Biochemistry, 36: 1–20.
Singh, U.; Singh, P.; Singh, A. K.; Laxmi, Kumar, D.; Tilak, R.; Shrivastava, S. K.; Asthana, R. K. (2021). Identification of antifungal and antibacterial biomolecules from a cyanobacterium, Arthrospira platensis. Algal Research,54:102215.
Singh, D. P.; Prabha, R.; Verma, S.; Meena, K.K. and Yandigeri, M. (2017).Antioxidant properties and polyphenolic content in terrestrial cyanobacteria. 3 Biotech, 7-134.
Singleton, V. L. and Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phospho-tungstic acid reagents. American Journal of Enology and Viticulture, 16: 144-158.
Uddin, M. A.; Shahinuzzaman, M.; Rana, M. d. S. and Yaakob, Z. (2017).Study of chemical composition and medicinal properties of volatile oil from Clove buds (Eugenia caryophyllus). International Journal of Pharmaceutical Sciences and Research, 8(2): 895-899.
Valgas, C.; DeSouza, S. M. and Smânia, E. F. A. (2007).Screening methods to determine antibacterial activity of natural products, Brazilian Journal of Microbiology , 38: 369–380.
Ventola, C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. P & T : a peer-reviewed journal for formulary management40(4), 277–283.
Yen, G. C. and Duh, P. D. (1994). Scavenging effect of Methanolic extracts of peanut hulls on free radical and anti-oxygen. Journal of Agricultural and Food Chemistry, 42:629-632.
Zaki, M. A.; Ashour, M.; Heneash, A. M. M.; Mabrouk, M. M.; Alprol, A. E.; Khairy, H. M.; Nour, A. M.; Mansour, A. T.; Hassanien, H. A.; Gaber, A. and Elshobary M. E. (2021).Potential Applications of Native Cyanobacterium Isolate (Arthrospira platensis NIOF17/003) for Biodiesel Production and Utilization of Its Byproduct in Marine Rotifer (Brachionus plicatilis) Production. Sustainability, 13, 1769.