PLANKTON COMMUNITY, WATER QUALITY AND GROWTH PERFORMANCE OF NILE TILAPIA AS AFFECTED BY HUMIC ACID IN AQUACULTURE PONDS

Document Type : Original Article

Authors

1 Botany department, Faculty of Science, Banha University,Egypt

2 Central Laboratory for Aquaculture Research (CLAR), abbassa, Abou-Hammad, Sharkia, Egypt.

Abstract

This study was carried out at Wady El-Ryan, Fayoum Governorate, Egypt to evaluate the influence of humic acid on enrichment of plankton community, water quality, growth performance and pond productivity of Nile tilapia. Eight earthen ponds of a total area of two feddan were used. These fish ponds were divided into four treatments; two replicates per each as the first treatment ponds (T1 and T2) were stocked with Nile tilapia fry 14000 fish/Fadden. The second ponds (T3 and T4) were stocked with 28000 fish/Fadden. T2 and T4 treatment ponds  received only supplemental feed at a rate of 3% of body weight (bw), while T1 and T3 were treated with humic acid at a rate of 3 Kg/ Feddan during the preparation of the ponds, then they received a supplemental feed adding on it 1.5 Kg of humic acid/ ton feed. Comparison between treatments showed that there were no significant differences (p> 0.05) in water temperature, salinity, total hardness and total alkalinity. Dissolved oxygen, orthophosphate, Chlorophyll "a", concentrations in T1 and T3 ponds were significantly higher (p < 0.05) than those of T2 and T4 ponds. Free ammonia, nitrate and nitrite concentrations in T2 and T4 ponds were significantly higher (p < 0.05) than those of T1 and T3 ponds. Secchi disk reading was significantly higher in T4 ponds than that of the other treatment ponds. Phytoplankton and zooplankton abundances were significantly higher in T1 and T3 ponds than those of T2 and T4. The final weight of Nile tilapia was maximized at T1 ponds, while the lowest one was in T4 ponds.

Keywords


Adolf, J. E; Bachvaroff, T. R and Place, A. R. (2009). Environmental modulation of karlotoxin levels in strains of the cosmopolitan dinoflagellate Karlodinium veneficum (Dinophyceae). J Phycol, 45: 176−192.
APHA. (2000). Standard Methods for the Examination of Water and Wastewater. 21st edition.  Eaton, A.D., Clesceri, L.C. and Greenberg, A.E. (eds.).  American Public Health Association, Washington, DC.
APHA. (1985). American Public Health Association Standard Methods for the examination of  water and waste water   15th  edition. Pp 476.
Avci, M.; Denek, N. and Kaplan, O. (2007). Effects of Humic acid at different levels on growth performance, Carcass Yields and some biochemical parameters of quails. Journal of Animal and Veterinary Advances, 6 (1): 1-4.
Azim M.E.; M.A. Wahab; P.K. Biswas; T. Asaeda; T. Fujino; and M.C. Verdegem. 2005. The effect of periphyton substrate density on production in freshwater polyculture ponds. Aquac., 232: 441–453.
Azim M. E.; Verdegem, M. C.; Singh, M.; Dam, A. A. and Beveridge, M. C. (2003b). The effects of periphyton substrate and fish stocking density on water quality, phytoplankton, periphyton and fish growth. Aquac. Res., 34: 685-695.
Azim, M. E.; Verdegem, M. C.; Mantingh, I.; Van Dam, A. A. and Beveridge, M. C. M. (2003a). Ingestion and utilization of periphyton grown on artificial substrates by Nile tilapia, Oreochromis niloticus. L. Aquac. Res., 34: 85–92.
Bakhsh, H. K., (2001) Influence of Humic Acid on Water Quality and Growth of Algae in Freshwater Ecosystem. Masters thesis, Universiti Putra Malaysia.
Brett, M. T. and Goldman, C. R. (1996). Ameta-analysis of the freshwater trophic cascade. Proc. Acad*Sci.USA, 93: 7723-7726
Carlsson, P.; Graneli, E.; Tester, P. and Boni, L. (1995). Influences of riverine humic substances on bacteria, protozoa, phytoplankton and copepods in a coastal plankton community. Mar. Ecol.Prog. Ser. 127: 213-221
Conzonno, V. H. and Cirelli, F. A (1996). Humic substances and phytoplankton primary production in chascomus pond (Argantina). Facts and Speculations. Rev. Asoc.Cienc.Nat.Litoral 27(1): 35-42.
Crisman, T. L. and Beaver, J. R. (1990). Application of planktonic biomanipulationfor managing eutrophication in the subtropic. Hydrobiologia, 200/201:  177-185.
Diana, J. S.; Dettweiler, D. J. and Lin,C.K.(1991). Effect of Nile tilapia (Oreochromis niloticus) on the ecosystem of aquaculture ponds, and its significance to the trophic cascade hyphothesis. Can.J.Fish.Aquat.ScL,48:183-190.
Elhigzi, F. A. R.; Haider, S. A. and Larsson, P. (1995).Interactions between Nile tilapia (Oreochromis niloticus) and cladocerans in ponds (Khartoum, Sudan).Hydrobiologia, 307:263-272.
Gutseit, K.; Berglund, O. and Graneli, W. (2007). Food quality for Daphnia in humic and clear water lakes. Freshwater Biology, 52:344–356.
Hansson, L. A.; Nicolle, N.; Brodersen, J.; Romare, P.; Nilsson, P. A. and Brönmark, C. (2007). Consequences of fish predation, migration, and juvenile ontogeny on zooplankton spring dynamics. Limnology and Oceanography, 52: 696-706.
Hessen, D. O.; Andersen, T.; Lyche,  A. (1989).  Differential  grazing  and resource  utilization  of  zooplankton  in  a  humic  lake.  Arch Hydrobiol114: 321-347.
Huchette, S. M.;  Beveridge, M. C.; Baird, D. J. and Ireland, M. (2000). The impacts of grazing by tilapias (Oreochromis niloticus) on periphyton communities growing on artificial substrate in cages. Aquac., 186: 45–60.
Janik, J. J. (1989). Nutrient recycling in Castle Lake, California: Phytoptankton-zooplankton interactions. Diss. ABST.-TNT.-PT.-B.-and- ENG. 49(8):141.
Kankaala, P. (1988). The relative importance of algae and bacteria as food for Daphnia longispina (Cladocera) in a polyhumic lake. Freshwat. Biol., 19: 285-296.
Keskitalo, J. and Eloranta, P. (eds.) (1998) Limnology of Humic Waters. Leiden: Backhuys.
Klochenko, P.D.; Vasilchuk, T. A.; Medved, V. A. and Vasilenko, O. V. (2011). Peculiarities of the Influence of Humic Acids on the Development of Plankton Algae. Hydrobiological Journal, 47 (1).
Meinelt, T. ; Pietrock, M.; Wienke, A. and Volker, F. (2003). Humic substances and the water calcium content change the toxicity of malachite green. Journal of Applied Ichthyology, 19, 380–382
NFEP. (1997). Production enhancement of the Indian major carp, Labeo rohita (Ham.) using bamboo trimmings as a substrate for the growth of periphyton. NFEP Paper No. 10. Northwest Fisheries Extension Project, Parbatipur,  Dinajpur, Bangladesh.
Nehad, K. and Howayda, H. A. (2010). Some Investigations on Zooplankton and Biochemical Contents content of phytoplankton in Wadi El-Rayan Lakes, Egypt. World Applied Science Journal, 11(9): 1035- 1046.
Prakash, A.; Rashid, M. A. and Jensen, A. (1973). Influence of humic substances on the growth of marine phytoplankton: diatoms. Limnol. Oceanogr. 18:516-524.
Prescott, G. W., (1962). Algae of the Western Great Lakes Area, P: 517. Brown, W. M. C. Com. USA.
Ramesh, M. R.; Shankar, K. M.; Mohan, C. V. and Varghese, T. J. (1999). Comparison of three plant substrates for enhancing carp growth through bacterial biofilm. Aquac. Eng., 19: 119– 131.
Richardson, W. B.; Wickham, S. A. and Threlkeld, S. T. (1990).  Food web response to the experimental manipulation of a bentivore (Cypinus carpio), zooplankton (Menidia heryllina) and benthic insects.Arch.Hydrobiol,119:143-165.
Sarir, M. S.; Durrani, M. I. and Mian, A. I. (2006). Effect of the source and rate of humic acid on phosphorus transformations. Journal of Agricultural and Biological Science, 1: 29-31
Sánchez-Marín, P. and Beiras, R (2011). Adsorption of different types of dissolved organic matter to marine phytoplankton and implications for phytoplankton growth and Pb bioavailability. Journal of Plankton Research, 33: 9Pp. 1396-1409
Shaker, I. M. (2008). Effect of using different types of organic manure (compost; chicken, mycelium) and mineral fertilizer on water quality, plankton abundance and on growth performance of Oreochromis niloticus in earthen ponds. Abbassa. Int. J. Aqua. (1A): 203-227.
Shaker, I. M. and Mahmoud, A. A. (2007). The biological load of silver carp cages in Nile River and effects of their on water quality & growth performance. Egypt. J. Aquat. Biol. & Fish., 11 (2): 119-143.
Shaker, I. M. and Abdel-Aal, M. (2006). Growth performance of fish reared under different densities in semi-intensive and extensive earthen ponds. Egypt. J. Aquat. Biol. & Fish., 10 (4): 109-127.
Shaker, I. M.; Mona, A. H. and Mahmoud, A. A. (2009). Effect of periphyton substrate on water quality and growth performance of Nile tilapia in earthen ponds. Abbassa Int.J. Aqua., Special Issue for Global Fisheries & Aquaculture Research Conference, Cairo International Convention Center, 24–26 October, pp 741-763.
Shaker, I. M; Abou Zeid, M. Y. and Batran, A. (2013): Effect of using periphyton substrate (bamboo stems) on water quality, phytoplankton, zooplankton, periphyton and growth performance for tilapia, mullet and catfish in earthen ponds. Abbassa, Int., J. Aqua., 6 (No 1): 108-139.
Shannon, C. R. and Weaver, W. (1949). The Mathematical Theory of Communication. Urbana University Press, Urbana, Illinois, 117 pp.
Singh, C. P. and Amberger, A. (1991). Solubilization and availability of P during decomposition of rock phosphate enriched straw and urine. Biol. Agric. Hort, 7: 261.
Smith, D. W. and Pledrahita, R. H. (1988). The relation between phytoplankton and dissolved oxygen in fish ponds. Aquaculture, 68: 249-265.
Statistical Analysis System (SAS). (2000). SAS program Ver 6.12, SAS institute incorporation, Cary, NC 27513 USA.
Steinberg, T. M; Timofeyev, M. A; Bittner, .M. and Menzel, R. (2008) Review Series Humic Substances Part 2: Interactions with Organisms. Env Sci Pollut Res, 15 (2): 128 – 135.
Sun, B. K; Tanji, T. and Unno, H. (2006). Extinction of cells of cyanobacterium Anabaena circinalis in the presence of humic acid under light. Appl Microbiol Biotechnol., 72: 823-828.
Taniguchi, G. M.; Bicudo, D. C. and Senna, P. A. C. (2005). Gradiente litorâneo-limnético do fitoplâncton e ficoperifíton em uma lagoa da planície de inundação do Rio MogiGuaçu. Revista Brasileira de Botânica., 28: 137-147.
Thompson, F. B.; Abreu, P. C. and Wasielesky, W. (2002). Importance of biofilm for water quality and nourishment in  intensive shrimp culture. Aquac., 203: 263– 278.
Vrana,  D.  and  Votruba,  J.  (1995). Influence of soluble humic substances on the of Algae and Blue-Green  Algae.  Folia  Microbiol.,  40 (2) : 207-208.
Wahab, M. A.; Mannan, M. A.; Huda, M. A.; Azim, M. E.; Beveridge, M.C. and Tollervey, A.G. (1999). Effects of periphyton grown on bamboo substrates on growth and production of Indian Major carp rohu (Labeo rohita Ham.). Bangladesh J. of Fisheries Res., 3: 1-10.
Wet, L .F. and Visagie, W.  (2010). Evaluating CHD-FA Carbohydrate-Derived Fulvic Acid for Use  in  Diets  of  Mozambique  Tilapia  Oreochromis Mossambicus. Feed Technology Group Division Aquaculture University of Stellenbosh South Africa.
Zaret,T. M. (1980). Predation and freshwater communities. New Haven and London,Yale Univ. Press,187pp.